Existence of Positive Solutions for Kirchhoff Type Problems with Critical Exponent

被引:31
作者
Sun Yijing [1 ]
Liu Xing [1 ]
机构
[1] Grad Univ Chinese Acad Sci, Sch Math, Beijing 100049, Peoples R China
来源
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS | 2012年 / 25卷 / 02期
关键词
Kirchhoff type equation; Nehari manifold; Ekeland's variational principle; critical exponent;
D O I
10.4208/jpde.v25.n2.5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following Kirchhoff type problem with critical exponent {(u = 0,)-(a+b integral(Omega)vertical bar del u vertical bar(2)dx) Delta u = lambda u(q) + u(5) , in Omega, on partial derivative Omega, where Omega subset of R-3 is a bounded smooth domain, 0 < q < 1 and the parameters a,b,A.> 0. We show that there exists a positive constant T-4 (a) depending only on a, such that for each a>0 and 0 < lambda < T-4 (a), the above problem has at least one positive solution. The method we used here is based on the Nehari manifold, Ekeland's variational principle and the concentration compactness principle.
引用
收藏
页码:187 / 198
页数:12
相关论文
共 19 条
[1]   ON A CLASS OF NONLOCAL ELLIPTIC PROBLEMS WITH CRITICAL GROWTH [J].
Alves, C. O. ;
Correa, F. J. S. A. ;
Figueiredo, G. M. .
DIFFERENTIAL EQUATIONS & APPLICATIONS, 2010, 2 (03) :409-417
[2]   Positive solutions for a quasilinear elliptic equation of Kirchhoff type [J].
Alves, CO ;
Corrêa, FJSA ;
Ma, TF .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (01) :85-93
[3]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[4]   A uniqueness result for a nonlocal equation of Kirchhoff type and some related open problem [J].
Anello, Giovanni .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (01) :248-251
[5]   On the well-posedness of the Kirchhoff string [J].
Arosio, A ;
Panizzi, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) :305-330
[6]  
Aubin J. P., 1984, APPL NON LINEAR ANAL
[7]  
BREZIS H, 1993, CR ACAD SCI I-MATH, V317, P465
[8]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[9]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[10]   The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions [J].
Chen, Ching-yu ;
Kuo, Yueh-cheng ;
Wu, Tsung-fang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (04) :1876-1908