Existence of Positive Solutions for Kirchhoff Type Problems with Critical Exponent

被引:31
作者
Sun Yijing [1 ]
Liu Xing [1 ]
机构
[1] Grad Univ Chinese Acad Sci, Sch Math, Beijing 100049, Peoples R China
来源
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS | 2012年 / 25卷 / 02期
关键词
Kirchhoff type equation; Nehari manifold; Ekeland's variational principle; critical exponent;
D O I
10.4208/jpde.v25.n2.5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following Kirchhoff type problem with critical exponent {(u = 0,)-(a+b integral(Omega)vertical bar del u vertical bar(2)dx) Delta u = lambda u(q) + u(5) , in Omega, on partial derivative Omega, where Omega subset of R-3 is a bounded smooth domain, 0 < q < 1 and the parameters a,b,A.> 0. We show that there exists a positive constant T-4 (a) depending only on a, such that for each a>0 and 0 < lambda < T-4 (a), the above problem has at least one positive solution. The method we used here is based on the Nehari manifold, Ekeland's variational principle and the concentration compactness principle.
引用
收藏
页码:187 / 198
页数:12
相关论文
共 19 条