DIFFERENTIAL-DIFFERENCE OPERATORS AND MONODROMY REPRESENTATIONS OF HECKE ALGEBRAS

被引:11
作者
DUNKL, CF
机构
[1] University Of Virginia, Charlottesville, VA
关键词
D O I
10.2140/pjm.1993.159.271
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Associated to any finite reflection group G on an Euclidean space there is a parametrized commutative algebra of differential-difference operators with as many parameters as there are conjugacy classes of reflections. The Hecke algebra of the group can be represented by monodromy action on the space of functions annihilated by each differential-difference operator in the algebra. For each irreducible representation of G the differential-difference equations lead to a linear system of first-order meromorphic differential equations corresponding to an integrable connection over the G-orbits of regular points in the complexification of the Euclidean space. The fundamental group is the generalized Artin braid group belonging to G, and its monodromy representation factors over the Hecke algebra of G. Monodromy has long been of importance in the study of special functions of several variables, for example, the hyperlogarithms of Lappo-Danilevsky are used to express the flat sections and the work of Riemann on the monodromy of the hypergeometric equation is applied to the case of dihedral groups.
引用
收藏
页码:271 / 298
页数:28
相关论文
共 30 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS
[2]  
BENSON CT, 1985, GTM99
[3]  
Bourbaki N., 2006, ALGEBRE
[4]   FUNDAMENTAL GROUP OF SPACES OF REGULAR ORBITS OF FINITE COMPLEX REFLECTING GROUPS [J].
BRIESKORN, E .
INVENTIONES MATHEMATICAE, 1971, 12 (01) :57-+
[5]   A UNIFICATION OF KNIZHNIK-ZAMOLODCHIKOV AND DUNKL OPERATORS VIA AFFINE HECKE ALGEBRAS [J].
CHEREDNIK, I .
INVENTIONES MATHEMATICAE, 1991, 106 (02) :411-431
[6]  
CURTIS CW, 1971, I HAUT ETUD SCI PUBL, V40, P81
[7]  
DUNKL C, 1990, INVARIANT THEORY TAB, P107
[9]  
DUNKL CF, 1989, GEOMETRIAE DEDICATA, V32, P157
[10]   ON THE SEMISIMPLICITY OF HECKE ALGEBRAS [J].
GYOJA, A ;
UNO, K .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1989, 41 (01) :75-79