NON-NOETHERIAN RINGS FOR WHICH EACH PROPER SUBRING IS NOETHERIAN

被引:9
|
作者
GILMER, R
OMALLEY, M
机构
[1] FLORIDA STATE UNIV,TALLAHASSEE,FL 32306
[2] UNIV HOUSTON,HOUSTON,TX 77004
关键词
D O I
10.7146/math.scand.a-11418
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:118 / 122
页数:5
相关论文
共 50 条
  • [41] Non-noetherian groups and primitivity of their group algebras
    Alexander, James
    Nishinaka, Tsunekazu
    JOURNAL OF ALGEBRA, 2017, 473 : 221 - 246
  • [42] A note on maximal non-Noetherian subrings of a domain
    Noômen Jarboui
    Ayada Jerbi
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2012, 53 (1): : 159 - 172
  • [43] Non-Noetherian down-up algebras
    Kirkman, E
    Kuzmanovich, J
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (11) : 5255 - 5268
  • [44] NON-COMMUTATIVE MINIMALLY NON-NOETHERIAN RING
    HAUSEN, J
    JOHNSON, JA
    MATHEMATICA SCANDINAVICA, 1975, 36 (02) : 313 - 316
  • [45] A note on maximal non-Noetherian subrings of a domain
    Jarboui, Noomen
    Jerbi, Ayada
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2012, 53 (01): : 159 - 172
  • [46] Uniqueness of the Jackiw Non-Noetherian Conformal Scalar Field
    Ayón-Beato, Eloy
    Hassaine, Mokhtar
    SSRN, 2023,
  • [47] Weak Bourbaki unmixed rings: A step towards non-Noetherian Cohen-Macaulayness
    Hamilton, TD
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2004, 34 (03) : 963 - 977
  • [48] LEFT NOETHERIAN RINGS WITH DIFFERENTIALLY TRIVIAL PROPER QUOTIENT RINGS
    Artemovych, O. D.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2009, 1 (01) : 4 - 7
  • [49] Uniqueness of the Jackiw non-Noetherian conformal scalar field
    Ayon-Beato, Eloy
    Hassaine, Mokhtar
    ANNALS OF PHYSICS, 2023, 458
  • [50] 2-DIMENSIONAL NON-NOETHERIAN FACTORIAL RING
    GILMER, R
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (03): : A317 - A317