NON-NOETHERIAN RINGS FOR WHICH EACH PROPER SUBRING IS NOETHERIAN

被引:9
|
作者
GILMER, R
OMALLEY, M
机构
[1] FLORIDA STATE UNIV,TALLAHASSEE,FL 32306
[2] UNIV HOUSTON,HOUSTON,TX 77004
关键词
D O I
10.7146/math.scand.a-11418
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:118 / 122
页数:5
相关论文
共 50 条
  • [31] Building Noetherian and non-Noetherian integral domains using power series
    Heinzer, W
    Rotthaus, C
    Wiegand, S
    IDEAL THEORETIC METHODS IN COMMUTATIVE ALGEBRA, 2001, 220 : 251 - 264
  • [32] Generating non-Noetherian modules constructively
    Coquand, T
    Lombardi, H
    Quitté, C
    MANUSCRIPTA MATHEMATICA, 2004, 115 (04) : 513 - 520
  • [33] Non-Noetherian conformal Cheshire effect
    Eloy Ayón-Beato
    Mokhtar Hassaine
    Pedro A. Sánchez
    The European Physical Journal C, 85 (3):
  • [34] MULTIPLICITY OF NON-NOETHERIAN MODULES ON A RING
    REUFEL, M
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1976, 283 : 21 - 52
  • [35] GENERATING NON-NOETHERIAN MODULES EFFICIENTLY
    HEITMANN, R
    MICHIGAN MATHEMATICAL JOURNAL, 1984, 31 (02) : 167 - 180
  • [36] Generating non-Noetherian modules constructively
    Thierry Coquand
    Henri Lombardi
    Claude Quitté
    manuscripta mathematica, 2004, 115 : 513 - 520
  • [37] A CHARACTERIZATION OF NON-NOETHERIAN BFDS AND FFDS
    Hasenauer, Richard Erwin
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2017, 47 (04) : 1149 - 1157
  • [38] Non-Noetherian conformal scalar fields
    Ayon-Beato, Eloy
    Hassaine, Mokhtar
    ANNALS OF PHYSICS, 2024, 460
  • [39] Maximal non-Noetherian subrings of a domain
    Ayache, A
    Jarboui, N
    JOURNAL OF ALGEBRA, 2002, 248 (02) : 806 - 823
  • [40] Non-Noetherian generalized Heisenberg algebras
    Lopes, Samuel A.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (04)