Convex Analysis and Duality over Discrete Domains

被引:7
作者
Adivar, Murat [1 ]
Fang, Shu-Cherng [2 ]
机构
[1] Fayetteville State Univ, Dept Management Mkt & Entrepreneurship, Fayetteville, NC 28301 USA
[2] North Carolina State Univ, Coll Engn, Ind & Syst Engn, Raleigh, NC 27695 USA
关键词
Discrete convex analysis; Discrete Lagrangian duality; Discrete Slater's condition; Discrete strong duality; Integer programming; Integrality;
D O I
10.1007/s40305-017-0158-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The aim of this paper is to establish a fundamental theory of convex analysis for the sets and functions over a discrete domain. By introducing conjugate/biconjugate functions and a discrete duality notion for the cones over discrete domains, we study duals of optimization problems whose decision parameters are integers. In particular, we construct duality theory for integer linear programming, provide a discrete version of Slater's condition that implies the strong duality and discuss the relationship between integrality and discrete convexity.
引用
收藏
页码:189 / 247
页数:59
相关论文
共 18 条
[1]   CONVEX OPTIMIZATION ON MIXED DOMAINS [J].
Adivar, Murat ;
Fang, Shu-Cherng .
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2012, 8 (01) :189-227
[2]  
Boyd S., 2004, CONVEX OPTIMIZATION, DOI https://doi.org/10.1017/CBO9780511804441
[3]  
Doignon J-P., 1973, J GEOM, V3, P71
[4]  
Facchinei F., 2000, FINITE DIMENSIONAL V
[5]  
Favati P., 1990, RICERCA OPERATIVA, V53, P3
[6]   Notes on L-/M-convex functions and the separation theorems [J].
Fujishige, S ;
Murota, K .
MATHEMATICAL PROGRAMMING, 2000, 88 (01) :129-146
[7]  
Hadjisavvas N., 2005, HDB GEN CONVEXITY GE
[8]  
Hoffman A.J., 1956, LINEAR INEQUALITIES, V38, P223
[9]   Towards strong duality in integer programming [J].
Li, D. ;
Sun, X. L. .
JOURNAL OF GLOBAL OPTIMIZATION, 2006, 35 (02) :255-282