RUSSIAN TRAFFIC SIGN IMAGES DATASET

被引:16
作者
Shakhuro, V. I. [1 ]
Konushin, A. S. [2 ]
机构
[1] NRU Higher Sch Econ, Moscow, Russia
[2] Lomonosov Moscow State Univ, Moscow, Russia
关键词
traffic sign dataset; traffic sign classification and detection; cascade of weak classifiers; convolutional neural network;
D O I
10.18287/2412-6179-2016-40-2-294-300
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A new public dataset of traffic sign images is presented. The dataset is intended for training and testing the algorithms of traffic sign recognition. We describe the dataset structure and guidelines for working with the dataset, comparing it with the previously published traffic sign datasets. The evaluation of modern detection and classification algorithms conducted using the proposed dataset has shown that existing methods of recognition of a wide class of traffic signs do not achieve the accuracy and completeness required for a number of applications.
引用
收藏
页码:294 / 300
页数:7
相关论文
共 21 条
[1]  
[Anonymous], 2015, PROC CVPR IEEE, DOI [DOI 10.1109/TNS.2017.2756441, DOI 10.1109/CVPR.2015.7299170]
[2]  
Benenson R, 2012, PROC CVPR IEEE, P2903, DOI 10.1109/CVPR.2012.6248017
[3]   A SYSTEM FOR LARGE-SCALE AUTOMATIC TRAFFIC SIGN RECOGNITION AND MAPPING [J].
Chigorin, Alexander ;
Konushin, Anton .
CMRT13 - CITY MODELS, ROADS AND TRAFFIC 2013, 2013, II-3/W3 :13-17
[4]   Multi-column deep neural network for traffic sign classification [J].
Ciresan, Dan ;
Meier, Ueli ;
Masci, Jonathan ;
Schmidhuber, Juergen .
NEURAL NETWORKS, 2012, 32 :333-338
[5]   Histograms of oriented gradients for human detection [J].
Dalal, N ;
Triggs, B .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :886-893
[6]  
Dollar P., PIOTRS IMAGE VIDEO M
[7]   Fast Feature Pyramids for Object Detection [J].
Dollar, Piotr ;
Appel, Ron ;
Belongie, Serge ;
Perona, Pietro .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (08) :1532-1545
[8]   Crosstalk Cascades for Frame-Rate Pedestrian Detection [J].
Dollar, Piotr ;
Appel, Ron ;
Kienzle, Wolf .
COMPUTER VISION - ECCV 2012, PT II, 2012, 7573 :645-659
[9]  
Houben S, 2013, IEEE INT C INTELL TR, P7, DOI 10.1109/ITSC.2013.6728595
[10]   Caffe: Convolutional Architecture for Fast Feature Embedding [J].
Jia, Yangqing ;
Shelhamer, Evan ;
Donahue, Jeff ;
Karayev, Sergey ;
Long, Jonathan ;
Girshick, Ross ;
Guadarrama, Sergio ;
Darrell, Trevor .
PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), 2014, :675-678