Polarized Tips or Surfaces: Consequences in Kelvin Probe Force Microscopy

被引:14
作者
Hynninen, T. [1 ,2 ]
Foster, A. S. [1 ,2 ]
Barth, C. [3 ]
机构
[1] Tampere Univ Technol, Dept Phys, POB 692, FI-33101 Tampere, Finland
[2] Aalto Univ Sch Sci, Dept Appl Phys, FI-00076 Aalto, Finland
[3] CNRS, Ctr Interdisciplinaire Nanosci Marseille, F-13288 Marseille 09, France
来源
E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY | 2011年 / 9卷
基金
芬兰科学院;
关键词
Atomic force microscopy; Kelvin probe force microscopy; Charge detection; Density functional calculations; Magnesium oxides; Thin insulating films;
D O I
10.1380/ejssnt.2011.6
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, we present non-contact atomic force microscopy (nc-AFM) and Kelvin probe force microscopy(KPFM) simulations of the (001) surface of silver and supported MgO thin films. From the calculated forcespectroscopy, we predict atomic resolution at tip-surface distances of less than 5 angstrom. For KPFM, we study the influence of charges localized on either the tip or on the surface on the Kelvin voltage. It is shown that the Kelvinvoltage changes when the tip is placed above an MgO monolayer, only if the layer has a permanent net dipole. Forpoint charges on the silver surface we examine the lateral resolution in the distance range of 1 to 3 nm, which isthe standard working distance in KPFM. We show that point charges appear as nanometer large spots in Kelvinimages, which is due to a long-range electrostatic interaction with the tip apex.
引用
收藏
页码:6 / 14
页数:9
相关论文
共 50 条
  • [31] Pulsed Force Kelvin Probe Force Microscopy through Integration of Lock-In Detection
    Zahmatkeshsaredorahi, Amirhossein
    Jakob, Devon S.
    Fang, Hui
    Fakhraai, Zahra
    Xu, Xiaoji G.
    NANO LETTERS, 2023, 23 (19) : 8953 - 8959
  • [32] Study of polymer/ZnO nanostructure interfaces by Kelvin probe force microscopy
    Xu, Tingting
    Venkatesan, Swaminathan
    Galipeau, David
    Qiao, Qiquan
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2013, 108 : 246 - 251
  • [33] Amplitude or frequency modulation-detection in Kelvin probe force microscopy
    Glatzel, T
    Sadewasser, S
    Lux-Steiner, MC
    APPLIED SURFACE SCIENCE, 2003, 210 (1-2) : 84 - 89
  • [34] Buried polymer/metal interfaces examined with Kelvin Probe Force Microscopy
    Marzec, M. M.
    Awsiuk, K.
    Bernasik, A.
    Rysz, J.
    Haberko, J.
    Luzny, W.
    Budkowski, A.
    THIN SOLID FILMS, 2013, 531 : 271 - 276
  • [35] Deconvolution of Kelvin probe force microscopy measurements-methodology and application
    Machleidt, T.
    Sparrer, E.
    Kapusi, D.
    Franke, K-H
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2009, 20 (08)
  • [36] AC Kelvin Probe Force Microscopy Enables Charge Mapping in Water
    Hackl, Thomas
    Schitter, Georg
    Mesquida, Patrick
    ACS NANO, 2022, 16 (11) : 17982 - 17990
  • [37] Kelvin probe force microscopy for local characterisation of active nanoelectronic devices
    Wagner, Tino
    Beyer, Hannes
    Reissner, Patrick
    Mensch, Philipp
    Riel, Heike
    Gotsmann, Bernd
    Stemmer, Andreas
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2015, 6 : 2193 - 2206
  • [38] Nanoscale electronic measurements of semiconductors using Kelvin probe force microscopy
    Rosenwaks, Y
    Shikler, R
    Scanning Probe Microscopy: Characterization, Nanofabrication and Device Application of Functional Materials, 2005, 186 : 119 - +
  • [39] Effect of SP-C on surface potential distribution in pulmonary surfactant: Atomic force microscopy and Kelvin probe force microscopy study
    Hane, Francis
    Moores, Brad
    Amrein, Matthias
    Leonenko, Zoya
    ULTRAMICROSCOPY, 2009, 109 (08) : 968 - 973
  • [40] Nanoscale characterization of copper oxide films by Kelvin Probe Force Microscopy
    Berthold, Tobias
    Benstetter, Guenther
    Frammelsberger, Werner
    Rodriguez, Rosana
    Nafria, Montserrat
    THIN SOLID FILMS, 2015, 584 : 310 - 315