Polarized Tips or Surfaces: Consequences in Kelvin Probe Force Microscopy

被引:14
作者
Hynninen, T. [1 ,2 ]
Foster, A. S. [1 ,2 ]
Barth, C. [3 ]
机构
[1] Tampere Univ Technol, Dept Phys, POB 692, FI-33101 Tampere, Finland
[2] Aalto Univ Sch Sci, Dept Appl Phys, FI-00076 Aalto, Finland
[3] CNRS, Ctr Interdisciplinaire Nanosci Marseille, F-13288 Marseille 09, France
来源
E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY | 2011年 / 9卷
基金
芬兰科学院;
关键词
Atomic force microscopy; Kelvin probe force microscopy; Charge detection; Density functional calculations; Magnesium oxides; Thin insulating films;
D O I
10.1380/ejssnt.2011.6
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, we present non-contact atomic force microscopy (nc-AFM) and Kelvin probe force microscopy(KPFM) simulations of the (001) surface of silver and supported MgO thin films. From the calculated forcespectroscopy, we predict atomic resolution at tip-surface distances of less than 5 angstrom. For KPFM, we study the influence of charges localized on either the tip or on the surface on the Kelvin voltage. It is shown that the Kelvinvoltage changes when the tip is placed above an MgO monolayer, only if the layer has a permanent net dipole. Forpoint charges on the silver surface we examine the lateral resolution in the distance range of 1 to 3 nm, which isthe standard working distance in KPFM. We show that point charges appear as nanometer large spots in Kelvinimages, which is due to a long-range electrostatic interaction with the tip apex.
引用
收藏
页码:6 / 14
页数:9
相关论文
共 50 条
  • [21] Resonant multi-frequency method for Kelvin probe force microscopy in air
    Ding, X. D.
    Li, C.
    Liang, Z. W.
    Lin, G. C.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2012, 23 (10)
  • [22] Artifacts in time-resolved Kelvin probe force microscopy
    Sadewasser, Sascha
    Nicoara, Nicoleta
    Solares, Santiago D.
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2018, 9 : 1272 - 1281
  • [23] Application of Kelvin Probe Force Microscopy to Microstructure Evaluation of Steel
    Honma, Yuta
    Sasaki, Gen
    Hashi, Kunihiko
    Masuda, Hiroyuki
    Hayakawa, Masao
    Nagai, Kotobu
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 2020, 106 (01): : 39 - 49
  • [24] Preventing probe induced topography correlated artifacts in Kelvin Probe Force Microscopy
    Polak, Leo
    Wijngaarden, Rinke J.
    ULTRAMICROSCOPY, 2016, 171 : 158 - 165
  • [25] Probing CO on a rutile TiO2(110) surface using atomic force microscopy and Kelvin probe force microscopy
    Adachi, Yuuki
    Sugawara, Yasuhiro
    Li, Yan Jun
    NANO RESEARCH, 2022, 15 (03) : 1909 - 1915
  • [26] Probing CO on a rutile TiO2(110) surface using atomic force microscopy and Kelvin probe force microscopy
    Yuuki Adachi
    Yasuhiro Sugawara
    Yan Jun Li
    Nano Research, 2022, 15 : 1909 - 1915
  • [27] Characterization of graphene layers by Kelvin probe force microscopy and micro-Raman spectroscopy
    Nazarov, A. N.
    Gordienko, S. O.
    Lytvyn, P. M.
    Strelchuk, V. V.
    Nikolenko, A. S.
    Vasin, A. V.
    Rusavsky, A. V.
    Lysenko, V. S.
    Popov, V. P.
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 10, NO 7-8, 2013, 10 (7-8): : 1172 - 1175
  • [28] Scanning capacitance force microscopy and Kelvin probe force microscopy of nanostructures embedded in SiO2
    Tallarida, G
    Spiga, S
    Fanciulli, M
    SCANNING PROBE MICROSCOPY: CHARACTERIZATION, NANOFABRICATION AND DEVICE APPLICATION OF FUNCTIONAL MATERIALS, 2005, 186 : 405 - +
  • [29] Distinguishing magnetic and electrostatic interactions by a Kelvin probe force microscopy-magnetic force microscopy combination
    Jaafar, Miriam
    Iglesias-Freire, Oscar
    Serrano-Ramon, Luis
    Ricardo Ibarra, Manuel
    Maria de Teresa, Jose
    Asenjo, Agustina
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2011, 2 : 552 - 560
  • [30] Nanoscale Characteristics of Ocular Lipid Thin Films Using Kelvin Probe Force Microscopy
    Drolle, Elizabeth
    Ngo, William
    Leonenko, Zoya
    Subbaraman, Lakshman
    Jones, Lyndon
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2020, 9 (07): : 1 - 11