Polarized Tips or Surfaces: Consequences in Kelvin Probe Force Microscopy

被引:14
|
作者
Hynninen, T. [1 ,2 ]
Foster, A. S. [1 ,2 ]
Barth, C. [3 ]
机构
[1] Tampere Univ Technol, Dept Phys, POB 692, FI-33101 Tampere, Finland
[2] Aalto Univ Sch Sci, Dept Appl Phys, FI-00076 Aalto, Finland
[3] CNRS, Ctr Interdisciplinaire Nanosci Marseille, F-13288 Marseille 09, France
来源
E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY | 2011年 / 9卷
基金
芬兰科学院;
关键词
Atomic force microscopy; Kelvin probe force microscopy; Charge detection; Density functional calculations; Magnesium oxides; Thin insulating films;
D O I
10.1380/ejssnt.2011.6
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, we present non-contact atomic force microscopy (nc-AFM) and Kelvin probe force microscopy(KPFM) simulations of the (001) surface of silver and supported MgO thin films. From the calculated forcespectroscopy, we predict atomic resolution at tip-surface distances of less than 5 angstrom. For KPFM, we study the influence of charges localized on either the tip or on the surface on the Kelvin voltage. It is shown that the Kelvinvoltage changes when the tip is placed above an MgO monolayer, only if the layer has a permanent net dipole. Forpoint charges on the silver surface we examine the lateral resolution in the distance range of 1 to 3 nm, which isthe standard working distance in KPFM. We show that point charges appear as nanometer large spots in Kelvinimages, which is due to a long-range electrostatic interaction with the tip apex.
引用
收藏
页码:6 / 14
页数:9
相关论文
共 50 条
  • [1] Pulsed Force Kelvin Probe Force Microscopy
    Jakob, Devon S.
    Wang, Haomin
    Xu, Xiaoji G.
    ACS NANO, 2020, 14 (04) : 4839 - 4848
  • [2] Kelvin probe force microscopy for the characterization of semiconductor surfaces in chalcopyrite solar cells
    Sommerhalter, C
    Sadewasser, S
    Glatzel, T
    Matthes, TW
    Jäger-Waldau, A
    Lux-Steiner, MC
    SURFACE SCIENCE, 2001, 482 : 1362 - 1367
  • [3] Kelvin probe force microscopy in liquid using electrochemical force microscopy
    Collins, Liam
    Jesse, Stephen
    Kilpatrick, Jason I.
    Tselev, Alexander
    Okatan, M. Baris
    Kalinin, Sergei V.
    Rodriguez, Brian J.
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2015, 6 : 201 - 214
  • [4] Kelvin probe force microscopy and its application
    Melitz, Wilhelm
    Shen, Jian
    Kummel, Andrew C.
    Lee, Sangyeob
    SURFACE SCIENCE REPORTS, 2011, 66 (01) : 1 - 27
  • [5] On the deconvolution of Kelvin probe force microscopy data
    Bluemel, A.
    Plank, H.
    Klug, A.
    Fisslthaler, E.
    Sezen, M.
    Grogger, W.
    List, E. J. W.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (05)
  • [6] Kelvin probe force microscopy for material characterization
    Glatzel, Thilo
    Gysin, Urs
    Meyer, Ernst
    MICROSCOPY, 2022, 71 : i165 - i173
  • [7] Kelvin probe force microscopy study on nanotriboelectrification
    Sun, Hao
    Chu, Haibin
    Wang, Jinyong
    Ding, Lei
    Li, Yan
    APPLIED PHYSICS LETTERS, 2010, 96 (08)
  • [8] Epitaxial Growth of Pentacene on Alkali Halide Surfaces Studied by Kelvin Probe Force Microscopy
    Neff, Julia L.
    Milde, Peter
    Leon, Carmen Perez
    Kundrat, Matthew D.
    Eng, Lukas M.
    Jacob, Christoph R.
    Hoffmann-Vogel, Regina
    ACS NANO, 2014, 8 (04) : 3294 - 3301
  • [9] Frequency-modulation Kelvin probe force microscopy under tapping mode operation for surfaces with large protrusions
    Misaka, Tomoki
    Kajimoto, Kentaro
    Araki, Kento
    Otsuka, Yoichi
    Matsumoto, Takuya
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2020, 59 (09)
  • [10] Water desorption in Kelvin-probe force microscopy: a generic model
    Mesquida, P.
    Kohl, D.
    Bansode, S.
    Duer, M.
    Schitter, G.
    NANOTECHNOLOGY, 2018, 29 (50)