COHERENT STATES FOR THE QUANTUM COMPLEX-PLANE

被引:14
作者
KOWALSKI, K [1 ]
REMBIELINSKI, J [1 ]
机构
[1] UNIV LODZ,DEPT THEORET PHYS,PL-90236 LODZ,POLAND
关键词
D O I
10.1063/1.530162
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The coherent states for the quantum complex plane are introduced. It is demonstrated that the Bargmann representation corresponding to these states involves both the standard integral with respect to the Gaussian measure and the Berezin integral over Grassmann variables. The quantum generalizations of many constructions developed for classical coherent states are described.
引用
收藏
页码:2153 / 2165
页数:13
相关论文
共 19 条
[2]   ON THE QUANTUM DIFFERENTIAL-CALCULUS AND THE QUANTUM HOLOMORPHICITY [J].
BRZEZINSKI, T ;
DABROWSKI, H ;
REMBIELINSKI, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (01) :19-24
[3]   Q-INTEGRALS ON THE QUANTUM COMPLEX-PLANE [J].
BRZEZINSKI, T ;
REMBIELINSKI, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (07) :1945-1952
[4]  
CONNES A, 1985, PUBL MATH IHES, V62, P41
[5]  
Drinfeld V.G., 1986, P INT C MATH, V1, P789
[6]  
FADEEV LD, 1988, QUANTIZATION LIE GRO, V1
[7]   ON COHERENT STATES FOR THE SIMPLEST QUANTUM GROUPS [J].
JURCO, B .
LETTERS IN MATHEMATICAL PHYSICS, 1991, 21 (01) :51-58
[8]  
Klauder J. R., 1985, COHERENT STATES
[9]  
Kowalski K, 1991, NONLINEAR DYNAMICAL
[10]  
MANIN Y, 1988, CRM1561 MONTR U