REACTIVE OXYGEN SPECIES AND THE CENTRAL-NERVOUS-SYSTEM

被引:2508
作者
HALLIWELL, B
机构
[1] Division of Pulmonary-Critical Care Medicine, UC-Davis Medical Center, Sacramento, California
关键词
D O I
10.1111/j.1471-4159.1992.tb10990.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Radicals are species containing one or more unpaired electrons, such as nitric oxide (NO.). The oxygen radical superoxide (O2.-) and the nonradical hydrogen peroxide (H2O2) are produced during normal metabolism and perform several useful functions. Excessive production of 02.- and H2O2 can result in tissue damage, which often involves generation of highly reactive hydroxyl radical (.OH) and other oxidants in the presence of "catalytic" iron or copper ions. An important form of antioxidant defense is the storage and transport of iron and copper ions in forms that will not catalyze formation of reactive radicals. Tissue injury, e.g., by ischemia or trauma, can cause increased metal ion availability and accelerate free radical reactions. This may be especially important in the brain because areas of this organ are rich in iron and CSF cannot bind released iron ions. Oxidative stress on nervous tissue can produce damage by several interacting mechanisms, including increases in intracellular free Ca2+ and, possibly, release of excitatory amino acids. Recent suggestions that free radical reactions are involved in the neurotoxicity of aluminum and in damage to the substantia nigra in patients with Parkinson's disease are reviewed. Finally, the nature of antioxidants is discussed, it being suggested that antioxidant enzymes and chelators of transition metal ions may be more generally useful protective agents than chain-breaking antioxidants. Careful precautions must be used in the design of antioxidants for therapeutic use.
引用
收藏
页码:1609 / 1623
页数:15
相关论文
共 182 条
[1]  
ABREO K, 1991, J AM SOC NEPHROL, V1, P1299
[2]   BIOCHEMICAL-MECHANISMS OF 1-METHYL-4-PHENYL-1,2,3,6-TETRAHYDROPYRIDINE TOXICITY - COULD OXIDATIVE STRESS BE INVOLVED IN THE BRAIN [J].
ADAMS, JD ;
ODUNZE, IN .
BIOCHEMICAL PHARMACOLOGY, 1991, 41 (08) :1099-1105
[3]   FREE-RADICAL PRODUCTION AND ISCHEMIC BRAIN-DAMAGE - INFLUENCE OF POSTISCHEMIC OXYGEN-TENSION [J].
AGARDH, CD ;
ZHANG, H ;
SMITH, ML ;
SIESJO, BK .
INTERNATIONAL JOURNAL OF DEVELOPMENTAL NEUROSCIENCE, 1991, 9 (02) :127-138
[4]   REDUCING POSTISCHEMIC PARAPLEGIA USING CONJUGATED SUPEROXIDE-DISMUTASE [J].
AGEE, JM ;
FLANAGAN, T ;
BLACKBOURNE, LH ;
KRON, IL ;
TRIBBLE, CG .
ANNALS OF THORACIC SURGERY, 1991, 51 (06) :911-915
[5]   PARKINSONS-DISEASE - PATHOPHYSIOLOGY [J].
AGID, Y .
LANCET, 1991, 337 (8753) :1321-1324
[6]  
ANDORN AC, 1988, MOL PHARMACOL, V33, P155
[7]  
[Anonymous], 2015, FREE RADICAL BIO MED
[8]   MANGANESE POISONING AND THE ATTACK OF TRIVALENT MANGANESE UPON CATECHOLAMINES [J].
ARCHIBALD, FS ;
TYREE, C .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1987, 256 (02) :638-650
[9]   SUPEROXIDE-DEPENDENT AND ASCORBATE-DEPENDENT FORMATION OF HYDROXYL RADICALS FROM HYDROGEN-PEROXIDE IN THE PRESENCE OF IRON - ARE LACTOFERRIN AND TRANSFERRIN PROMOTERS OF HYDROXYL-RADICAL GENERATION [J].
ARUOMA, OI ;
HALLIWELL, B .
BIOCHEMICAL JOURNAL, 1987, 241 (01) :273-278
[10]   THE MECHANISM OF INITIATION OF LIPID-PEROXIDATION - EVIDENCE AGAINST A REQUIREMENT FOR AN IRON(II) IRON(III) COMPLEX [J].
ARUOMA, OI ;
HALLIWELL, B ;
LAUGHTON, MJ ;
QUINLAN, GJ ;
GUTTERIDGE, JMC .
BIOCHEMICAL JOURNAL, 1989, 258 (02) :617-620