LONG-RANGE SCATTERING FOR NONLINEAR SCHRODINGER-EQUATIONS IN ONE SPACE DIMENSION

被引:216
作者
OZAWA, T
机构
[1] Laboratoire de Physique Théorique et Hautes Energies, Université de Paris XI, Orsay, F-91405
关键词
D O I
10.1007/BF02101876
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the scattering problem for the nonlinear Schrodinger equation in 1 + 1 dimensions: i(partial)t(u) + (1/2)partial2u = lambda\u\2u + mu\u\p-1u, (t,x)epsilon-R x R, (*) where partial = partial/partial(x), lambda-epsilon-R\{0}, mu-epsilon-R, p > 3. We show that modified wave operators for (*) exist on a dense set of a neighborhood of zero in the Lebesgue space L2(R) or in the Sobolev space H-1(R). The modified wave operators are introduced in order to control the long range nonlinearity lambda\u\2u.
引用
收藏
页码:479 / 493
页数:15
相关论文
共 30 条
[2]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836
[3]  
CAZENAVE T, 1989, TEXTOS METODOS MATEM, V22
[4]   ON THE INITIAL-VALUE PROBLEM FOR A NON-LINEAR SCHRODINGER-EQUATION [J].
DONG, GC ;
LI, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1981, 42 (03) :353-365
[5]   ON GLOBAL-SOLUTIONS OF THE MAXWELL-DIRAC EQUATIONS [J].
FLATO, M ;
SIMON, J ;
TAFLIN, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 112 (01) :21-49
[6]  
Friedman A., 1969, PARTIAL DIFFERENTIAL
[7]  
GINIBRE J, 1985, J MATH PURE APPL, V64, P363
[8]  
GINIBRE J, 1978, ANN I H POINCARE A, V28, P287
[9]  
GINIBRE J, UNPUB
[10]   BLOWING UP OF SOLUTIONS TO CAUCHY-PROBLEM FOR NONLINEAR SCHRODINGER EQUATIONS [J].
GLASSEY, RT .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (09) :1794-1797