DIFFUSION OF WALKERS WITH PERSISTENT VELOCITIES

被引:35
作者
ARAUJO, M
HAVLIN, S
WEISS, GH
STANLEY, HE
机构
[1] BOSTON UNIV, DEPT PHYS, BOSTON, MA 02215 USA
[2] NIH, DIV COMP RES & TECHNOL, PHYS SCI LAB, BETHESDA, MD 20892 USA
来源
PHYSICAL REVIEW A | 1991年 / 43卷 / 10期
关键词
D O I
10.1103/PhysRevA.43.5207
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We describe some properties for a phenomenological model of superdiffusion based on a generalization of the persistent random walk in one dimension to continuous time. The time spent moving to either increasing or decreasing x is characterized by a fractal-time pausing time density, psi(t) approximately T-alpha/t-alpha + 1, with 1 < alpha < 2. For this system it is shown that asymptotically p(0,t) approximately 1/t1/alpha. The form of the profile is shown to be Gaussian near the peak and to fall off like tx-(1 + alpha) near the tails, and the survival probability is asymptotically proportional to exp(- Bt/L-alpha). These results are confirmed by numerical calculations based on the method of exact enumeration.
引用
收藏
页码:5207 / 5213
页数:7
相关论文
共 28 条
[1]  
BLUMEN A, 1984, PHYS REV LETT, V53, P1301, DOI 10.1103/PhysRevLett.53.1301
[2]   SUPERDIFFUSION IN RANDOM VELOCITY-FIELDS [J].
BOUCHAUD, JP ;
GEORGES, A ;
KOPLIK, J ;
PROVATA, A ;
REDNER, S .
PHYSICAL REVIEW LETTERS, 1990, 64 (21) :2503-2506
[3]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[4]  
Bunde A., 1991, FRACTALS DISORDERED
[5]   NUMBER OF DISTINCT SITES VISITED BY A RANDOM-WALK [J].
DONSKER, MD ;
VARADHAN, SRS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1979, 32 (06) :721-747
[6]  
Feller W., 1971, INTRO PROBABILITY TH, VVolume II
[7]   DIRECTED WAVE-PROPAGATION IN RANDOM-MEDIA - SUPERDIFFUSION AND PHASE-TRANSITION [J].
FENG, SH ;
GOLUBOVIC, L ;
ZHANG, YC .
PHYSICAL REVIEW LETTERS, 1990, 65 (08) :1028-1031
[8]   DIFFUSION IN DISORDERED MEDIA [J].
HAVLIN, S ;
BENAVRAHAM, D .
ADVANCES IN PHYSICS, 1987, 36 (06) :695-798
[9]   LEVY WALK APPROACH TO ANOMALOUS DIFFUSION [J].
KLAFTER, J ;
BLUMEN, A ;
ZUMOFEN, G ;
SHLESINGER, MF .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1990, 168 (01) :637-645
[10]   A CONTINUOUS-TIME GENERALIZATION OF THE PERSISTENT RANDOM-WALK [J].
MASOLIVER, J ;
LINDENBERG, K ;
WEISS, GH .
PHYSICA A, 1989, 157 (02) :891-898