MIRROR SYMMETRY FOR HYPERSURFACES IN WEIGHTED PROJECTIVE-SPACE AND TOPOLOGICAL COUPLINGS

被引:14
作者
BERGLUND, P [1 ]
KATZ, S [1 ]
机构
[1] OKLAHOMA STATE UNIV,DEPT MATH,STILLWATER,OK 74078
基金
美国国家科学基金会;
关键词
D O I
10.1016/0550-3213(94)90382-4
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
By means of toric geometry we study hypersurfaces in weighted projective space of dimension four. In particular we compute for a given manifold its intrinsic topological coupling. We find that the result agrees with the calculation of the corresponding coupling on the mirror model in the large-complex-structure limit.
引用
收藏
页码:289 / 314
页数:26
相关论文
共 42 条
[1]  
[Anonymous], 1983, PROGR MATH
[2]  
ASPINWALL P, IASSNSHEP9343 PREPR
[3]   MULTIPLE MIRROR MANIFOLDS AND TOPOLOGY CHANGE IN STRING THEORY [J].
ASPINWALL, PS ;
GREENE, BR ;
MORRISON, DR .
PHYSICS LETTERS B, 1993, 303 (3-4) :249-259
[4]  
ASPINWALL PS, IASSNSHEP9338 I ADV
[5]  
BATYREV V, QUANTUM COHOMOLOGY R
[6]   VARIATIONS OF THE MIXED HODGE STRUCTURE OF AFFINE HYPERSURFACES IN ALGEBRAIC TORI [J].
BATYREV, VV .
DUKE MATHEMATICAL JOURNAL, 1993, 69 (02) :349-409
[7]  
BATYREV VV, GENERALIZED HYPERGEO
[8]   A GENERALIZED CONSTRUCTION OF MIRROR MANIFOLDS [J].
BERGLUND, P ;
HUBSCH, T .
NUCLEAR PHYSICS B, 1993, 393 (1-2) :377-391
[9]  
BERGLUND P, UNPUB
[10]  
BERGLUND P, 1991, MAY P MSRI BERK