ANTI-MITRE STEINER TRIPLE-SYSTEMS

被引:33
作者
COLBOURN, CJ
MENDELSOHN, E
ROSA, A
SIRAN, J
机构
[1] UNIV KOMENSKEHO,KATEDRA ALGEBRY TEORIE CISEL,CS-84215 BRATISLAVA,SLOVAKIA
[2] UNIV WATERLOO,WATERLOO N2L 3G1,ONTARIO,CANADA
[3] UNIV TORONTO,DEPT MATH,TORONTO M5S 1A1,ONTARIO,CANADA
[4] MCMASTER UNIV,HAMILTON L8S 4K1,ONTARIO,CANADA
关键词
D O I
10.1007/BF02986668
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A mitre in a Steiner triple system is a set of five triples on seven points, in which two are disjoint. Recursive constructions for Steiner triple systems containing no mitre are developed, leading to such anti-mitre systems for at least 9/16 of the admissible orders. Computational results for small cyclic Steiner triple systems are also included.
引用
收藏
页码:215 / 224
页数:10
相关论文
共 11 条
[1]  
Brouwer A. E., 1977, STEINER TRIPLE SYSTE, V104/77
[2]  
Colbourn M. J., 1980, ANN DISCRETE MATH, V7, P215
[3]  
Frenz T. C., 1992, Journal of Combinatorial Mathematics and Combinatorial Computing, V11, P23
[4]  
Griggs T. S., 1990, J COMBIN INFORM SYST, V15, P79
[5]  
Leffmann H., 1993, J COMB DES, V1, P379
[6]  
Mathon R. A., 1983, ARS COMBINATORIA, V15, P3
[7]  
ROBINSON RM, 1975, MATH COMPUT, V20, P223
[8]  
ROSA A, 1975, C NUMER, V13, P183
[9]  
STEET AP, 1987, COMBINATORICS EXPT D
[10]   SOME RESULTS ON QUADRILATERALS IN STEINER TRIPLE-SYSTEMS [J].
STINSON, DR ;
WEI, YJ .
DISCRETE MATHEMATICS, 1992, 105 (1-3) :207-219