DESIGN CONSIDERATIONS FOR SLAB-COLUMN CONNECTIONS IN SEISMIC ZONES

被引:1
作者
MEGALLY, S
GHALI, A
机构
关键词
COLUMNS (SUPPORTS); CONNECTIONS; CYCLIC LOADS; DUCTILITY; EARTHQUAKE-RESISTANT STRUCTURES; FLAT CONCRETE PLATES; LATERAL PRESSURE; PUNCHING SHEAR; REINFORCED CONCRETE; SHEAR STRENGTH; SLABS; STRUCTURAL DESIGN;
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The transfer of shearing forces and moments between concrete flat slabs and columns can produce brittle punching failure. Slab-column connections must satisfy adequate strength against punching failure. In seismic zones, the connections are expected to undergo deformations into the inelastic range and, hence, it is necessary to design connections with adequate strength and ductility. In addition, the connections must be able to undergo a specified limit of interstory drift without punching failure. The interstory drift is defined as the difference of lateral deflections between two successive floors. The ductility and drift requirements that must be adhered to in design are discussed Tests reported in the literature show that the strength under cyclic moment transfer is less than the strength under monotonic loading. For an earthquake-resistant structure, the design must be based on the strength under cyclic loading. Test results are reviewed and discussed The results show that under cyclic moment transfer, the nominal shear strength allowed by ACI 318-89 and the Canadian codes can be nonconservative. As an application, a hypothetical structure is designed according to the ACI Building Code (ACI 318-89). The structure is subjected to the 1940 El-centro ground motion, and time-history dynamic analysis is performed The results show that to obtain adequate strength, drift capacity, and ductile behavior of a slab-column connection without shear reinforcement, it is necessary in most cases to increase substantially the slab thickness in the connection region beyond the minimum thickness required to control deflections by providing shear capitals. The disadvantages of shear capitals can be avoided by using shear reinforcement.
引用
收藏
页码:303 / 314
页数:12
相关论文
共 24 条
[1]  
[Anonymous], 1991, REINFORCED CONCRETE
[2]  
[Anonymous], 2012, MODEL CODE CONCRETE
[3]  
[Anonymous], COMPUTERS STRUCTURES
[4]  
DILGER W, 1991, 2ND P INT C HIGH RIS
[5]  
DILGER WH, 1981, P ASCE, V107, P2403
[6]  
ELGABRY AA, 1987, ACI STRUCT J, V84, P433
[7]  
Hawkins NM., 1975, CANADIAN J CIVIL ENG, V2, P572, DOI DOI 10.1139/L75-052
[8]  
ISLAM S, 1976, J STRUCT DIV-ASCE, V102, P549
[9]  
MOKHTAR AS, 1985, J AM CONCRETE I, V82, P676
[10]  
Newmark NM., 1982, ENG MONOGRAPHS EARTH