TATE-VOGEL EQUIVARIANT HOMOLOGY

被引:60
作者
GOICHOT, F
机构
关键词
D O I
10.1016/0022-4049(92)90009-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct and study a homology theory, extending Tate equivariant homology to infinite groups and infinite-dimensional CW-complexes. This theory relies heavily on a generalization of Tate homology for finite groups to the case of infinite groups, which is due to Pierre Vogel and which we describe here. The extension to equivariant homology is done using an adequate notion of resolution for a possibly unbounded complex.
引用
收藏
页码:39 / 64
页数:26
相关论文
共 16 条
[1]  
AVRAMOV L, 1990, KOBENHAVNS UMI PREPR, V1
[2]  
AVRAMOV L, 1989, KOBENHAVNS U MATH I, V25
[3]  
AVRAMOV L, UNPUB DIFFERENTIAL G
[4]  
AVRAMOV LL, 1986, LECTURE NOTES MATH, V1183
[5]  
Bourbaki N., 1980, ALGEBRE HOMOLOGIQUE
[6]  
Brown K.S, 1982, GRADUATE TEXTS MATH
[7]  
Cartan H., 1956, HOMOLOGICAL ALGEBRA
[8]  
Farrell F. T., 1977, J PURE APPL ALGEBRA, V10, P153
[9]   GORENSTEIN SPACES [J].
FELIX, Y ;
HALPERIN, S ;
THOMAS, JC .
ADVANCES IN MATHEMATICS, 1988, 71 (01) :92-112
[10]  
FIEDOROWICZ Z, IN PRESS T AM MATH S