POSITIVE ALMOST PERIODIC-SOLUTIONS OF SOME DELAY INTEGRAL-EQUATIONS

被引:41
作者
FINK, AM
GATICA, JA
机构
[1] UNIV IOWA,DEPT STAT & ACTUARIAL SCI,IOWA CITY,IA 52242
[2] UNIV IOWA,DEPT MATH,IOWA CITY,IA 52242
关键词
D O I
10.1016/0022-0396(90)90073-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The delay integral equation x(t) = ∝tt - τ f(s, x(s)) ds which arises in models for the spread of epidemics, is studied with the aim of establishing the existence of positive almost periodic solutions for large values of τ when f(t, x) is uniformly almost periodic in t for x in compact subsets of R+. Under reasonable assumptions on f it is shown that there exist two positive numbers τ* < τ0 such that if 0 < τ < τ* there are no positive almost periodic solutions while for τ > τ0 they do exist. A priori bounds on the set of positive solutions and uniqueness results are also obtained. © 1990.
引用
收藏
页码:166 / 178
页数:13
相关论文
共 7 条
[1]   PERIODICITY THRESHOLD THEOREM FOR EPIDEMICS AND POPULATION-GROWTH [J].
COOKE, KL ;
KAPLAN, JL .
MATHEMATICAL BIOSCIENCES, 1976, 31 (1-2) :87-104
[2]  
FINK AM, 1974, LECTURE NOTES MATH, V377
[3]   POSITIVE SOLUTIONS OF NONLINEAR INTEGRAL-EQUATIONS ARISING IN INFECTIOUS-DISEASES [J].
GUO, DJ ;
LAKSHMIKANTHAM, V .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1988, 134 (01) :1-8
[4]  
KRASNOLSELSKI MA, 1973, NONLINEAR PERIODIC O
[5]   PERIODICITY THRESHOLD THEOREM FOR SOME NONLINEAR INTEGRAL-EQUATIONS [J].
NUSSBAUM, R .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1978, 9 (02) :356-376
[6]  
Smith H.L., 1981, FUNKCIAL EKUUC, V24, P141
[7]   PERIODIC-SOLUTIONS OF A DELAY INTEGRAL-EQUATION MODELING EPIDEMICS [J].
SMITH, HL .
JOURNAL OF MATHEMATICAL BIOLOGY, 1977, 4 (01) :69-80