SHARP MEAN-VARIANCE BOUNDS FOR JENSEN-TYPE INEQUALITIES

被引:20
作者
PITTENGER, AO
机构
[1] Department of Mathematics and Statistics, University of Maryland Baltimore County, Catonsville
基金
美国国家科学基金会;
关键词
Jensen's inequality; Moment inequalities;
D O I
10.1016/0167-7152(90)90001-N
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We give a short proof of a Jensen-type inequality involving the mean and variance of random variables and valid for a class of functions having a convexity-like property. A number of applications are presented which illustrate the applicability of the result. © 1990.
引用
收藏
页码:91 / 94
页数:4
相关论文
共 7 条
[1]   INEQUALITIES WITH APPLICATION IN ECONOMIC RISK ANALYSIS [J].
AGNEW, RA .
JOURNAL OF APPLIED PROBABILITY, 1972, 9 (02) :441-&
[2]   REFINEMENT OF ARITHMETIC MEAN GEOMETRIC MEAN INEQUALITY [J].
CARTWRIGHT, DI ;
FIELD, MJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 71 (01) :36-38
[3]   NEGATIVE MOMENTS OF POSITIVE RANDOM-VARIABLES [J].
CHAO, MT ;
STRAWDER.WE .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1972, 67 (33) :429-&
[4]  
Eckberg A. E. Jr., 1977, Mathematics of Operations Research, V2, P135, DOI 10.1287/moor.2.2.135
[5]  
KARLIN S, 1966, MATH OPER RES
[6]  
Karlin S., 1966, TCHEBYCHEFF SYSTEMS
[7]   RANGE OF (N + 1)TH MOMENT FOR DISTRIBUTIONS ON [0 1] [J].
SKIBINSK.M .
JOURNAL OF APPLIED PROBABILITY, 1967, 4 (03) :543-&