LINEAR CODES WITH BALANCED WEIGHT DISTRIBUTION

被引:0
作者
LANGEVIN, P [1 ]
ZANOTTI, JP [1 ]
机构
[1] UNIV TOULON & VAR,GECT,F-83957 LA GARDE,FRANCE
关键词
BWD-CODES; CODES UNDER GROUPS; GAUSS SUMS; IRREDUCIBLE CYCLIC CODES; TRACE FUNCTION; TRANSPOSED CODES;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we study particular linear codes defined over F-q with an astonishing property, their weight distribution is balanced, i.e. there is the same number of codewords for each nonzero weight of the code. We call these codes BWD-codes. We first study BWD-codes by means of the Pless identities and we completely characterize the two-weight projective case. We study the class of codes defined under subgroups of the multiplicative group of F-qs, using the Gauss sums. Then, given a prime p and an integer N dividing p - 1, we construct all the N-weight BWD-codes of that class. We conclude this paper by some tables of BWD-codes and an open problem.
引用
收藏
页码:299 / 307
页数:9
相关论文
共 9 条
[1]  
CALDERBANK R, 1978, GEOMETRY 2 WEIGHT CO
[2]  
Delsarte Ph., 1972, Discrete Mathematics, V3, P47, DOI 10.1016/0012-365X(72)90024-6
[3]  
LANGEVIN P, 1995, IN PRESS FINITE FIEL
[4]  
LIDL R, 1983, ENCY MATH APPLICATIO, V20
[5]  
MacWilliams F., 1981, IEEE T INFORM THEORY, V27, P796
[6]  
Peterson William Wesley, 1972, ERROR CORRECTING COD
[7]  
WOLFMANN J, 1989, LECT NOTES COMPUT SC, V388, P47, DOI 10.1007/BFb0019846
[8]  
WOLFMANN J, 1977, J COMBINATORIAL THEO, V23, P209
[9]  
ZANOTTI JP, 1994, P IEEE S INFORMATION