A Hybrid Particle Swarm Optimization and Neural Network with Fuzzy Membership Function Technique for Epileptic Seizure Classification

被引:0
作者
Abuhasel, Khaled A. [1 ]
Iliyasu, Abdullah M. [1 ,2 ]
Fatichah, Chastine [3 ]
机构
[1] Salman Bin Abdulaziz Univ, Coll Engn, Al Kharj, Saudi Arabia
[2] Tokyo Inst Technol, Dept Computat Intelligence & Syst Sci, Midori Ku, Yokohama, Kanagawa 2268502, Japan
[3] Inst Teknol Sepuluh Nopember, Dept Informat, Surabaya 60111, East Java, Indonesia
关键词
epileptic seizure detection; fuzzy membership; neural network; particle swarm optimization; EEG signal;
D O I
10.20965/jaciii.2015.p0447
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A hybrid particle swarm optimization (PSO) integrating neural network with fuzzy membership function (NEWFM) technique is proposed for epileptic seizure classification tasks based on brain electroencephalography (EEG) signals. By combining PSO and NEWFM, the proposed method obtains the optimal parameters from the EEG data training required to achieve the best accuracy in disease diagnosis. NEWFM, a model of neural networks, is expected to improve the accuracy by updating weights of fuzzy membership functions. The PSO, a swarm-inspired optimization algorithm, is used to obtain the optimal parameters from the NEWFM. A standard dataset comprising of 5 sets of epileptic seizure detection data, each consisting 100 single EEGs segments is employed to evaluate the proposed technique's performance. Based on the experiments, the classification results show that the best accuracy of Z-S classification task is 99.5% with the optimal parameters of alpha = 0.1 and beta = 0.1. For the ZNF-S classification task, the best accuracy is 97.73% with the optimal parameters of alpha = 0.1 or 0.2 and beta = 0.2. Similar results for the ZNFO-S classification task is 97.64% with the optimal parameters set at alpha = 0.1 or 0.2 and beta = 0.1.
引用
收藏
页码:447 / 455
页数:9
相关论文
共 24 条
[1]   A combined AdaBoost and NEWFM technique for medical data classification [J].
Abuhasel, Khaled A. ;
Iliyasu, Abdullah M. ;
Fatichah, Chastine .
Lecture Notes in Electrical Engineering, 2015, 339 :801-809
[2]   A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy [J].
Adeli, Hojjat ;
Ghosh-Dastidar, Samanwoy ;
Dadmehr, Nahid .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2007, 54 (02) :205-211
[3]   Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state [J].
Andrzejak, RG ;
Lehnertz, K ;
Mormann, F ;
Rieke, C ;
David, P ;
Elger, CE .
PHYSICAL REVIEW E, 2001, 64 (06) :8-061907
[4]  
Fatichah C, 2014, P INT CONF NAT COMPU, P186, DOI 10.1109/ICNC.2014.6975832
[5]  
Fisher N., 2008, QUANTITATIVE EEG ANA, P157
[6]   Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection [J].
Ghosh-Dastidar, Samanwoy ;
Adeli, Hojat ;
Dadmehr, Nahid .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2008, 55 (02) :512-518
[7]  
GOLOVKO V, 2007, P INT JOINT C NEUR N
[8]  
Grosan C, 2007, STUD COMPUT INTELL, V75, P1
[9]   Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks [J].
Guo, Ling ;
Rivero, Daniel ;
Dorado, Julian ;
Rabunal, Juan R. ;
Pazos, Alejandro .
JOURNAL OF NEUROSCIENCE METHODS, 2010, 191 (01) :101-109
[10]  
Han M., 2010, P INT C INT CONTR IN