ON THE SPECTRUM OF FRACTIONAL BROWNIAN MOTIONS

被引:287
作者
FLANDRIN, P
机构
关键词
D O I
10.1109/18.42195
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:197 / 199
页数:3
相关论文
共 14 条
[1]   SIGNAL-DETECTION IN FRACTIONAL GAUSSIAN-NOISE [J].
BARTON, RJ ;
POOR, HV .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (05) :943-959
[2]  
DAUBECHIES I, 1987, WAVELET TRANSFORM TI
[3]   ON THE POSITIVITY OF THE WIGNER-VILLE SPECTRUM [J].
FLANDRIN, P .
SIGNAL PROCESSING, 1986, 11 (02) :187-189
[4]   DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE [J].
GROSSMANN, A ;
MORLET, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1984, 15 (04) :723-736
[5]   CHARACTERISTICS OF NATURAL SCENES RELATED TO THE FRACTAL DIMENSION [J].
KELLER, JM ;
CROWNOVER, RM ;
CHEN, RY .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1987, 9 (05) :621-627
[6]  
Kronland-Martinet R., 1987, INT J PATTERN RECOGN, V1, P97, DOI 10.1142/S0218001487000205
[7]  
LOYNES RM, 1968, J R STAT SOC B, V30, P1
[8]   FRACTIONAL BROWNIAN-MOTION - A MAXIMUM-LIKELIHOOD ESTIMATOR AND ITS APPLICATION TO IMAGE TEXTURE [J].
LUNDAHL, T ;
OHLEY, WJ ;
KAY, SM ;
SIFFERT, R .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1986, 5 (03) :152-161
[9]  
Mandelbrodt B. B., 1967, IEEE T INFORM THEORY, V13, P289, DOI DOI 10.1109/TIT.1967.1053992
[10]  
Mandelbrot B. B, 1983, AMJPHYS