Combinatorial Remarks on the Cyclic Sum Formula for Multiple Zeta Values

被引:0
作者
Saito, Shingo [1 ]
Tanaka, Tatsushi [1 ]
Wakabayashi, Noriko [2 ]
机构
[1] Kyushu Univ, Fac Math, Nishi Ku, 744 Motooka, Fukuoka 8190395, Japan
[2] Kyushu Sangyo Univ, Fac Engn, Higashi Ku, Fukuoka 8138503, Japan
关键词
multiple zeta values; multiple zeta; star values; cyclic sum formula; Lucas numbers;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The multiple zeta values are generalizations of the values of the Riemann zeta function at positive integers. They are known to satisfy a number of relations, among which are the cyclic sum formula. The cyclic sum formula can be stratified via linear operators defined by the second and third authors. We give the number of relations belonging to each stratum by combinatorial arguments.
引用
收藏
页数:20
相关论文
共 7 条
[1]  
Goncharov A. B., 2002, PERIODS MIXED MOTIVE
[2]  
Goncharov AB, 1997, MATH RES LETT, V4, P617
[3]   Relations of multiple zeta values and their algebraic expression [J].
Hoffman, ME ;
Ohno, Y .
JOURNAL OF ALGEBRA, 2003, 262 (02) :332-347
[4]   Cyclic sum of multiple zeta values [J].
Ohno, Yasuo ;
Wakabayashi, Noriko .
ACTA ARITHMETICA, 2006, 123 (03) :289-295
[5]   An algebraic proof of the cyclic sum formula for multiple zeta values [J].
Tanaka, Tatsushi ;
Wakabayashi, Noriko .
JOURNAL OF ALGEBRA, 2010, 323 (03) :766-778
[6]   Mixed Tate motives and multiple zeta values [J].
Terasoma, T .
INVENTIONES MATHEMATICAE, 2002, 149 (02) :339-369
[7]  
Zagier D., 1992, 1 EUR C MATH BIRKH B, V120, P497