ON THE SELF-LINKING OF KNOTS

被引:151
作者
BOTT, R
TAUBES, C
机构
[1] Harvard University, Department of Mathematics, Science Center 325, Cambridge, MA 02138
关键词
D O I
10.1063/1.530750
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This note describes a subcomplex F of the de Rham complex of parametrized knot space, which is combinatorial over a number of universal ''Anomaly Integrals.'' The self-linking integrals of Guadaguini, Martellini, and Mintchev [''Perturbative aspects of Chern-Simons field theory,'' Phys. Lett. B 227, 111 (1989)] and Bar-Natan [''Perturbative aspects of the Chern-Simons topological quantum field theory,'' Ph.D. thesis, Princeton University, 1991; also ''On the Vassiliev Knot Invariants'' (to appear in Topology)] are seen to represent the first nontrivial element in H-0(F)-occurring at level 4, and are anomaly free. However, already at the next level an anomalous term is possible.
引用
收藏
页码:5247 / 5287
页数:41
相关论文
共 10 条
[1]  
[Anonymous], 1959, REV MATH PURES APPL
[2]  
Arnold V. I., 1969, MAT ZAMETKI, V5, P227
[3]  
AXELROD S, 1993, CHERN SIMONS PERTURB
[4]  
AXELROD S, 1992, 20TH P DGM C, P3
[5]  
Bar-Natan D., 1991, THESIS PRINCETON U
[6]  
BARNATAN D, IN PRESS TOPOLOGY
[7]   A COMPACTIFICATION OF CONFIGURATION-SPACES [J].
FULTON, W ;
MACPHERSON, R .
ANNALS OF MATHEMATICS, 1994, 139 (01) :183-225
[8]   PERTURBATIVE ASPECTS OF THE CHERN-SIMONS FIELD-THEORY [J].
GUADAGNINI, E ;
MARTELLINI, M ;
MINTCHEV, M .
PHYSICS LETTERS B, 1989, 227 (01) :111-117
[9]  
KONTSEVICH M, 1992, FEYNMAN DIAGRAMS LOW
[10]  
POHL WF, 1968, J MATH MECH, V17, P975