ON A REGULARITY THEOREM FOR WEAK SOLUTIONS TO TRANSMISSION PROBLEMS WITH INTERNAL LIPSCHITZ BOUNDARIES

被引:83
作者
ESCAURIAZA, L
FABES, EB
VERCHOTA, G
机构
[1] UNIV MINNESOTA,SCH MATH,MINNEAPOLIS,MN 55455
[2] SYRACUSE UNIV,DEPT MATH,SYRACUSE,NY 13244
关键词
D O I
10.2307/2159357
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that if u is a weak solution to div(A-nabla-u) = 0 on an open set OMEGA containing a Lipschitz domain D, where A = kI(chi-D + I(chi-OMEGA/D) (k > 0, k not-equal 1). Then, the nontangential maximal function of the gradient of u lies in L2(partial derivative D).
引用
收藏
页码:1069 / 1076
页数:8
相关论文
共 8 条
[1]   THE CAUCHY INTEGRAL DEFINES AN OPERATOR ON L2 FOR LIPSCHITZ-CURVES [J].
COIFMAN, RR ;
MCINTOSH, A ;
MEYER, Y .
ANNALS OF MATHEMATICS, 1982, 116 (02) :361-387
[2]   POTENTIAL TECHNIQUES FOR BOUNDARY-VALUE PROBLEMS ON C1-DOMAINS [J].
FABES, EB ;
JODEIT, M ;
RIVIERE, NM .
ACTA MATHEMATICA, 1978, 141 (3-4) :165-186
[3]   THE NEUMANN PROBLEM ON LIPSCHITZ-DOMAINS [J].
JERISON, DS ;
KENIG, CE .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 4 (02) :203-207
[4]  
Necas J., 1967, METHODES DIRECTES TH
[5]  
Stein E. M., 1970, SINGULAR INTEGRAL DI
[7]  
Verchota G., 1982, THESIS U MINNESOTA
[8]  
VOGELIUS M, 1989, ARCH RATIONAL MECH A, V105, P299