A state-space construction for rational matrix greatest common divisors (GCD's) of rational transfer matrices is given. Also, it is shown how the GCD results can be used to solve the problem of designing stable minimum-phase squaring-down compensators for multivariable plants. One application is a direct state-space construction for such compensators and a state-space solution to "fat-plant" H-infinity control problems. The results make use of the concepts of strongly observable systems and maximally unobservable systems initiated in the respective works of Silverman and of Wonham and build upon the concepts introduced in the state-space GCD extraction results for polynomial matrices of Silverman and Van Dooren.
机构:
Carl von Ossietzky Univ Oldenburg, Dept Med Phys & Acoust, D-26111 Oldenburg, GermanyCarl von Ossietzky Univ Oldenburg, Dept Med Phys & Acoust, D-26111 Oldenburg, Germany
Mohammadiha, Nasser
Smaragdis, Paris
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA
Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USACarl von Ossietzky Univ Oldenburg, Dept Med Phys & Acoust, D-26111 Oldenburg, Germany
Smaragdis, Paris
Panahandeh, Ghazaleh
论文数: 0引用数: 0
h-index: 0
机构:
KTH Royal Inst Technol, Sch Elect Engn, Signal Proc Grp, Stockholm, SwedenCarl von Ossietzky Univ Oldenburg, Dept Med Phys & Acoust, D-26111 Oldenburg, Germany
Panahandeh, Ghazaleh
Doclo, Simon
论文数: 0引用数: 0
h-index: 0
机构:
Carl von Ossietzky Univ Oldenburg, Dept Med Phys & Acoust, D-26111 Oldenburg, GermanyCarl von Ossietzky Univ Oldenburg, Dept Med Phys & Acoust, D-26111 Oldenburg, Germany