Mn3O4 thin films functionalized with Ag, Au, and TiO2 analyzed using x-ray photoelectron spectroscopy

被引:12
作者
Bigiani, Lorenzo [1 ,2 ]
Barreca, Davide [3 ,4 ]
Gasparotto, Alberto [1 ,2 ]
Maccato, Chiara [1 ,2 ]
机构
[1] Padova Univ, Dept Chem Sci, I-35131 Padua, Italy
[2] INSTM, I-35131 Padua, Italy
[3] Padova Univ, Dept Chem Sci, CNR ICMATE, I-35131 Padua, Italy
[4] Padova Univ, Dept Chem Sci, INSTM, I-35131 Padua, Italy
来源
SURFACE SCIENCE SPECTRA | 2018年 / 25卷 / 01期
关键词
Mn3O4; silver; gold; titania; CVD; RF-sputtering; x-ray photoelectron spectroscopy;
D O I
10.1116/1.5029889
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In the present contribution, bare and composite Mn3O4 (Mn3O4-X, with X = Ag, Au, or TiO2) thin films were fabricated by a two-step vapor-phase route, consisting in: (1) chemical vapor deposition of Mn3O4 on Si(100) substrates starting from a fluorinated beta-diketonate diamine Mn(II) complex; (2) introduction of silver, gold, or titania by means of radio frequency (RF)-sputtering. The obtained results evidenced the formation of phase-pure alpha-Mn3O4 thin films chemically modified with fluorine, which after RF-sputtering yielded Mn3O4-X nanocomposite systems with tailored properties. In this work, data obtained by x-ray photoelectron spectroscopy characterization of the surface chemical composition are presented and discussed for bare and functionalized Mn3O4 systems. In addition to wide scan spectra, particular attention is dedicated to the analysis of C 1s, O 1s, Mn 2p, Mn 3s, F 1s and, eventually, Ag 3d, Au 4d(5/2), and Ti 2p core levels, as well as silver Auger signal. In the case of the Mn3O4-Au system, a quantification procedure aimed at circumventing problems arising from the overlap of Mn 2p/Au 4p(1/2) and Mn 3s/Au 4f signals is proposed. Published by the AVS.
引用
收藏
页数:26
相关论文
共 58 条
[1]  
Dubal D.P., Dhawale D.S., Salunkhe R.R., Pawar S.M., Lokhande C.D., Appl. Surf. Sci., 256, (2010)
[2]  
Dubal D.P., Dhawale D.S., Salunkhe R.R., Fulari V.J., Lokhande C.D., J. Alloys Compd., 497, (2010)
[3]  
Xu H.Y., Le Xu S., Li X.D., Wang H., Yan H., Appl. Surf. Sci., 252, (2006)
[4]  
Chen C., Ding G.J., Zhang D., Jiao Z., Wu M.H., Shek C.H., Wu C.M.L., Lai J.K.L., Chen Z.W., Nanoscale, 4, (2012)
[5]  
Dong H., Koh E.K., Lee S.-Y., J. Nanosci. Nanotechnol., 9, (2009)
[6]  
Fei Z.-Y., Sun B., Zhao L., Ji W.-J., Au C.-T., Chem. Eur. J., 19, (2013)
[7]  
Anil C., Madras G., J. Mol. Catal., A, 424, (2016)
[8]  
Belkhedkar M.R., Ubale A.U., J. Mol. Struct., 1068, (2014)
[9]  
Liu J., Jiang L.H., Zhang T.R., Jin J.T., Yuan L.Z., Sun G.Q., Electrochim. Acta, 205, (2016)
[10]  
Li N., Tian Y., Zhao J., Zhang J., Zhang J., Zuo W., Ding Y., Appl. Catal., B, 214, (2017)