A THEOREM ON SPACES OF CONSTANT CURVATURE

被引:0
|
作者
FULTON, CM
机构
来源
AMERICAN MATHEMATICAL MONTHLY | 1967年 / 74卷 / 05期
关键词
D O I
10.2307/2314893
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:565 / &
相关论文
共 50 条
  • [31] Bour’s theorem and helicoidal surfaces with constant mean curvature in the Bianchi–Cartan–Vranceanu spaces
    Renzo Caddeo
    Irene I. Onnis
    Paola Piu
    Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 : 913 - 932
  • [32] Geodesics in Randers spaces of constant curvature
    Robles, Colleen
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (04) : 1633 - 1651
  • [33] Constant curvature conditions for Kropina spaces
    Yoshikawa, R.
    Okubo, K.
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2012, 17 (01): : 115 - 124
  • [34] ROTATION HYPERSURFACES IN SPACES OF CONSTANT CURVATURE
    DOCARMO, M
    DAJCZER, M
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (02) : 685 - 709
  • [35] Emergent gravity in spaces of constant curvature
    Orlando Alvarez
    Matthew Haddad
    Journal of High Energy Physics, 2017
  • [36] BALL CHARACTERIZATIONS IN SPACES OF CONSTANT CURVATURE
    Jeronimo-Castro, Jesus
    Makai, Endre, Jr.
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2018, 55 (04) : 421 - 478
  • [37] On closed spaces of constant mean curvature
    Thomas, TY
    AMERICAN JOURNAL OF MATHEMATICS, 1936, 58 : 702 - 704
  • [38] POMPEIUS PROBLEM ON SPACES OF CONSTANT CURVATURE
    BERENSTEIN, CA
    ZALCMAN, L
    JOURNAL D ANALYSE MATHEMATIQUE, 1976, 30 : 113 - 130
  • [39] Point perturbations in constant curvature spaces
    Albeverio, Sergio
    Geyler, Vladimir A.
    Grishanov, Evgeniy N.
    Ivanov, Dmitriy A.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (04) : 728 - 758
  • [40] Rolling problems on spaces of constant curvature
    Jurdjevic, Velimir
    Zimmerman, Jason
    LAGRANGIAN AND HAMILTONIAN METHODS FOR NONLINEAR CONTROL 2006, 2007, 366 : 221 - +