A NECESSARY AND SUFFICIENT CONDITION FOR THE EXISTENCE OF THE LIMITING PROBABILITY OF A TIE FOR FIRST PLACE

被引:30
作者
BARYSHNIKOV, Y
EISENBERG, B
STENGLE, G
机构
[1] UNIV OSNABRUCK,W-4500 OSNABRUCK,GERMANY
[2] LEHIGH UNIV,DEPT MATH 14,BETHLEHEM,PA 18015
关键词
TIE; EXISTENCE OF THE LIMITING PROBABILITY; LOGARITHMIC SUMMABILITY; GEOMETRIC DISTRIBUTION; TAUBERIAN THEOREM; HIGHEST SCORE;
D O I
10.1016/0167-7152(94)00114-N
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Suppose that the scores of n players are unbounded, independent, integer valued random variables equal in distribution to X. We show that as n --> infinity, the limiting probability of a tie for the highest score exists if and only if P(X = j)/P(X > j) --> 0 as j --> infinity.
引用
收藏
页码:203 / 209
页数:7
相关论文
共 6 条
  • [1] ON THE NUMBER OF MAXIMA IN A DISCRETE SAMPLE
    BRANDS, JJAM
    STEUTEL, FW
    WILMS, RJG
    [J]. STATISTICS & PROBABILITY LETTERS, 1994, 20 (03) : 209 - 217
  • [2] ON THE MAXIMUM AND ITS UNIQUENESS FOR GEOMETRIC RANDOM SAMPLES
    BRUSS, FT
    OCINNEIDE, CA
    [J]. JOURNAL OF APPLIED PROBABILITY, 1990, 27 (03) : 598 - 610
  • [3] Eisenberg B., 1993, ANN APPL PROBAB, V3, P731, DOI DOI 10.1214/AOAP/1177005360
  • [4] GRIFFIN P, 1994, AM MATH MON, V101, P78
  • [5] MANN B, 1992, THESIS PRINCETON U P
  • [6] POSTNIKOV AG, 1980, P STEKLOV I MATH, V2