ESTIMATION OF LYAPUNOV EXPONENTS FROM TIME-SERIES - THE STOCHASTIC CASE

被引:55
作者
DAMMIG, M
MITSCHKE, F
机构
[1] Institut für Quantenoptik, Universität Hannover, W-3000 Hannover 1
关键词
D O I
10.1016/0375-9601(93)90865-W
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Direct estimation of the largest Lyapunov exponent from deterministically chaotic data is well established. From stochastic data a finite, positive value is obtained as well; we show how it is determined by spectral properties of the signal and by computational parameters. Distinction of chaos versus noise is discussed.
引用
收藏
页码:385 / 394
页数:10
相关论文
共 29 条
[1]   LYAPUNOV EXPONENTS IN CHAOTIC SYSTEMS - THEIR IMPORTANCE AND THEIR EVALUATION USING OBSERVED DATA [J].
ABARBANEL, HDI ;
BROWN, R ;
KENNEL, MB .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1991, 5 (09) :1347-1375
[2]  
[Anonymous], NONLINEAR MODEL FORE
[3]   ON THE DETECTION OF DETERMINISTIC STRUCTURES IN IRREGULAR SIGNALS [J].
DAMMIG, M ;
BODEN, C ;
MITSCHKE, F .
APPLIED PHYSICS B-PHOTOPHYSICS AND LASER CHEMISTRY, 1992, 55 (02) :121-125
[4]   FUNDAMENTAL LIMITATIONS FOR ESTIMATING DIMENSIONS AND LYAPUNOV EXPONENTS IN DYNAMIC-SYSTEMS [J].
ECKMANN, JP ;
RUELLE, D .
PHYSICA D, 1992, 56 (2-3) :185-187
[5]  
ECKMANN JP, 1985, REV MOD PHYS, V57, P607
[6]   CONVERGENCE-RATES AND DATA REQUIREMENTS FOR JACOBIAN-BASED ESTIMATES OF LYAPUNOV EXPONENTS FROM DATA [J].
ELLNER, S ;
GALLANT, AR ;
MCCAFFREY, D ;
NYCHKA, D .
PHYSICS LETTERS A, 1991, 153 (6-7) :357-363
[7]   DETERMINISTIC CHAOS - THE SCIENCE AND THE FICTION - COMMENT [J].
ESSEX, C ;
NERENBERG, MAH .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1991, 435 (1894) :287-292
[8]  
Gardiner C. W., 1990, HDB STOCHASTIC METHO
[9]   EVIDENCE FOR CLIMATIC ATTRACTORS - REPLY [J].
GRASSBERGER, P .
NATURE, 1987, 326 (6112) :524-524
[10]   DO CLIMATIC ATTRACTORS EXIST [J].
GRASSBERGER, P .
NATURE, 1986, 323 (6089) :609-612