THE TRANSIENT SOLUTION OF TIME-DEPENDENT M/M/1 QUEUES

被引:27
作者
ZHANG, J [1 ]
COYLE, EJ [1 ]
机构
[1] PURDUE UNIV,SCH ELECT ENGN,W LAFAYETTE,IN 47907
关键词
TRANSIENT ANALYSIS; TIME-DEPENDENT QUEUES; VOLTERRA-TYPE INTEGRAL EQUATIONS; M/M/1; QUEUES;
D O I
10.1109/18.104335
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The transient behavior of time-dependent M/M/1 queues is studied. By analyticity arguments, the boundary probability function pi-0(t), which is the probability that the queue is empty at time t, is shown to satisfy a Volterra-type integral equation. Examples are given and a numerical algorithm is used to solve the integral equation and to find the expected queue size from pi-0(t).
引用
收藏
页码:1690 / 1696
页数:7
相关论文
共 21 条
[1]  
Abate J., 1987, Queueing Systems Theory and Applications, V2, P41, DOI 10.1007/BF01182933
[2]  
Abramowitz M., 1965, HDB MATH FUNCTIONS
[3]   THEORY AND PERFORMANCE OF A SUBROUTINE FOR SOLVING VOLTERRA INTEGRAL-EQUATIONS [J].
BOWNDS, JM .
COMPUTING, 1982, 28 (04) :317-332
[4]  
Brunner H., 1986, NUMERICAL SOLUTION V
[5]   A WAITING LINE PROCESS OF MARKOV TYPE [J].
CLARKE, AB .
ANNALS OF MATHEMATICAL STATISTICS, 1956, 27 (02) :452-459
[6]  
DeCarlo R. A., 1989, LINEAR SYSTEMS
[7]  
Grassmann WK, 1977, EUR J OPNL RES, V1, P396
[8]   FAST NUMERICAL-SOLUTION OF NONLINEAR VOLTERRA CONVOLUTION EQUATIONS [J].
HAIRER, E ;
LUBICH, C ;
SCHLICHTE, M .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1985, 6 (03) :532-541
[9]  
JONES HM, 1985, MATH COMPUT, V44, P391, DOI 10.1090/S0025-5718-1985-0777271-5
[10]   ASYMPTOTIC ANALYSIS OF THE TIME-DEPENDENT M/M/1 QUEUE [J].
MASSEY, WA .
MATHEMATICS OF OPERATIONS RESEARCH, 1985, 10 (02) :305-327