AN IMPLICIT-FUNCTION THEOREM FOR C0,1-EQUATIONS AND PARAMETRIC C1,1-OPTIMIZATION

被引:37
作者
KUMMER, B
机构
[1] Section of Mathematics, Humboldt-University Berlin, Berlin, 1086
关键词
D O I
10.1016/0022-247X(91)90264-Z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The implicit-function theorem deals with the solutions of the equation F(x, t) = a for locally Lipschitz functions F from Rn + m into Rn. The existence of a locally well-defined and Lipschitzian solution function x = G(a, t) will be completely characterized in terms of certain multivalued directional derivatives of F which determine the corresponding derivatives of G in a simple way. Our directional derivatives are nothing but L. Thibault's (Ann. Mat. Pura Appl. (4) 125, 1980, 157-192) limit sets which have been introduced to extend Clarke's calculus to functions in abstract spaces. For parametric C1, 1-optimization problems, we study the critical point map, the associated critical values, and derive first and second order formulas, respectively. © 1991.
引用
收藏
页码:35 / 46
页数:12
相关论文
共 25 条
[1]  
AUBIN JP, 1984, APPLIED NONLINEAR AN
[2]  
AUBIN JP, 1987, WP8793 IIASA WORK PA
[3]  
Clarke F.H., 1983, OPTIMIZATION NONSMOO
[4]   INVERSE FUNCTION THEOREM [J].
CLARKE, FH .
PACIFIC JOURNAL OF MATHEMATICS, 1976, 64 (01) :97-102
[5]  
CORNET B, 1983, 8321 CTR OP RES EC D
[6]  
Fiacco A. V., 1983, INTRO SENSITIVITY ST
[7]  
FRANKOWSKA H, 1988, WP88018 IIASZ WORK P
[8]  
GUDDAT J, 1988, LECT NOTES MATH, V1354, P43
[9]   ON ITERATED MINIMIZATION IN NONCONVEX OPTIMIZATION [J].
JONGEN, HT ;
MOBERT, T ;
TAMMER, K .
MATHEMATICS OF OPERATIONS RESEARCH, 1986, 11 (04) :679-691
[10]  
JONGEN HT, 1988, 1 TH5 LEHR C MATH PR