INTEGRABILITY IN RANDOM MATRIX MODELS

被引:38
|
作者
ALVAREZGAUME, L
GOMEZ, C
LACKI, J
机构
[1] UNIV GENEVA,DEPT PHYS THEOR,CH-1211 GENEVA 4,SWITZERLAND
[2] INST ADV STUDY,SCH NAT SCI,PRINCETON,NJ 08540
[3] UNIV SALAMANCA,DEPT FIS,SALAMANCA,SPAIN
关键词
D O I
10.1016/0370-2693(91)91363-Z
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We prove the equivalence between the recent matrix model formulation of 2D gravity and lattice integrable models. For even potentials this system is the Volterra hierarchy, and many properties of the continuum matrix model like the Virasoro conditions on the partition function stem directly from the integrability properties of the lattice model and its hamiltonian properties.
引用
收藏
页码:56 / 62
页数:7
相关论文
共 50 条
  • [41] Bootstrapping cascaded random matrix models: Correlations in permutations of matrix products
    Byrnes, Niall
    Greaves, Gary R. W.
    Foreman, Matthew R.
    PHYSICAL REVIEW E, 2024, 110 (01)
  • [42] Integrability and generalized monodromy matrix
    Lhallabi, T.
    Moujib, A.
    PHYSICAL REVIEW D, 2007, 76 (06)
  • [43] Integrability conditions for compound random measures
    Palacio, Alan Riva
    Leisen, Fabrizio
    STATISTICS & PROBABILITY LETTERS, 2018, 135 : 32 - 37
  • [44] DOUBLING OF EQUATIONS AND UNIVERSALITY IN MATRIX MODELS OF RANDOM SURFACES
    BACHAS, C
    PETROPOULOS, PMS
    PHYSICS LETTERS B, 1990, 247 (2-3) : 363 - 369
  • [45] A method for constructing random matrix models of disordered bosons
    Huckleberry, Alan
    Schaffert, Kathrin
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (33)
  • [46] Factorisations for partition functions of random Hermitian matrix models
    Jackson, DM
    Perry, MJ
    Visentin, TI
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 179 (01) : 25 - 59
  • [47] Phase Transitions and Equilibrium Measures in Random Matrix Models
    A. Martínez-Finkelshtein
    R. Orive
    E. A. Rakhmanov
    Communications in Mathematical Physics, 2015, 333 : 1109 - 1173
  • [48] Temperature dependence in random matrix models with pairing condensates
    Vanderheyden, B
    Jackson, AD
    PHYSICAL REVIEW D, 2005, 72 (01): : 1 - 7
  • [49] Gravitational lensing by eigenvalue distributions of random matrix models
    Martinez Alonso, Luis
    Medina, Elena
    CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (09)
  • [50] Random matrix models for datasets with fixed time horizons
    Zitelli, G. L.
    QUANTITATIVE FINANCE, 2020, 20 (05) : 769 - 781