INTEGRABILITY IN RANDOM MATRIX MODELS

被引:38
|
作者
ALVAREZGAUME, L
GOMEZ, C
LACKI, J
机构
[1] UNIV GENEVA,DEPT PHYS THEOR,CH-1211 GENEVA 4,SWITZERLAND
[2] INST ADV STUDY,SCH NAT SCI,PRINCETON,NJ 08540
[3] UNIV SALAMANCA,DEPT FIS,SALAMANCA,SPAIN
关键词
D O I
10.1016/0370-2693(91)91363-Z
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We prove the equivalence between the recent matrix model formulation of 2D gravity and lattice integrable models. For even potentials this system is the Volterra hierarchy, and many properties of the continuum matrix model like the Virasoro conditions on the partition function stem directly from the integrability properties of the lattice model and its hamiltonian properties.
引用
收藏
页码:56 / 62
页数:7
相关论文
共 50 条
  • [31] Random matrix theories and exactly solvable models
    Jain, Sudhir R.
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2006, 56 (09) : 1021 - 1032
  • [32] Quasi-averages in Random Matrix Models
    I. Ya. Aref’eva
    I. V. Volovich
    Proceedings of the Steklov Institute of Mathematics, 2019, 306 : 1 - 8
  • [33] Random matrices and matrix models: the JNU lectures
    Mehta, Madan Lal
    Pramana - Journal of Physics, 1997, 48 (1 pt 1): : 7 - 48
  • [34] Noncrossing partition flow and random matrix models
    Pernici, Mario
    arXiv, 2021,
  • [35] Quasi-averages in Random Matrix Models
    Aref'eva, I. Ya.
    Volovich, I. V.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2019, 306 (01) : 1 - 8
  • [36] Random matrices and matrix models: The JNU lectures
    Mehta, ML
    PRAMANA-JOURNAL OF PHYSICS, 1997, 48 (01): : 7 - 48
  • [37] Breakdown of random matrix universality in Markov models
    Mosam, Faheem
    Vidaurre, Diego
    De Giuli, Eric
    PHYSICAL REVIEW E, 2021, 104 (02)
  • [38] Eigenvalue separation in some random matrix models
    Bassler, K. E.
    Forrester, P. J.
    Frankel, N. E.
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (03)
  • [39] Random matrix models for chiral and diquark condensation
    Vanderheyden, B
    Jackson, AD
    HADRONIC PHYSICS, 2005, 775 : 220 - 231
  • [40] Characteristic polynomials of complex random matrix models
    Akemann, G
    Vernizzi, G
    NUCLEAR PHYSICS B, 2003, 660 (03) : 532 - 556