INTEGRABILITY IN RANDOM MATRIX MODELS

被引:38
|
作者
ALVAREZGAUME, L
GOMEZ, C
LACKI, J
机构
[1] UNIV GENEVA,DEPT PHYS THEOR,CH-1211 GENEVA 4,SWITZERLAND
[2] INST ADV STUDY,SCH NAT SCI,PRINCETON,NJ 08540
[3] UNIV SALAMANCA,DEPT FIS,SALAMANCA,SPAIN
关键词
D O I
10.1016/0370-2693(91)91363-Z
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We prove the equivalence between the recent matrix model formulation of 2D gravity and lattice integrable models. For even potentials this system is the Volterra hierarchy, and many properties of the continuum matrix model like the Virasoro conditions on the partition function stem directly from the integrability properties of the lattice model and its hamiltonian properties.
引用
收藏
页码:56 / 62
页数:7
相关论文
共 50 条
  • [21] Integrability of the S-matrix versus integrability of the Hamiltonian
    Jung, C.
    Seligman, T. H.
    Physics Reports, 285 (03):
  • [22] Integrability of the S-matrix versus integrability of the Hamiltonian
    Jung, C
    Seligman, TH
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1997, 285 (03): : 77 - 141
  • [23] On uniform integrability of random variables
    Majerek, D
    Nowak, W
    Zieba, W
    STATISTICS & PROBABILITY LETTERS, 2005, 74 (03) : 272 - 280
  • [24] Detection Problems in the Spiked Random Matrix Models
    Jung, Ji Hyung
    Chung, Hye Won
    Lee, Ji Oon
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (10) : 7193 - 7231
  • [25] Random matrices and matrix models: The JNU lectures
    Madan Lal Mehta
    Pramana, 1997, 48 : 7 - 48
  • [26] The chiral phase transition and random matrix models
    Wettig, T
    Schafer, A
    Weidenmuller, HA
    NUCLEAR PHYSICS A, 1996, 610 (610) : C492 - C499
  • [27] Simple matrix models for random Bergman metrics
    Ferrari, Frank
    Klevtsov, Semyon
    Zelditch, Steve
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2012,
  • [28] Microscopic universality in Random Matrix Models of QCD
    Nishigaki, SM
    NEW DEVELOPMENTS IN QUANTUM FIELD THEORY, 1998, 366 : 287 - 295
  • [29] RANDOM-MATRIX MODELS WITH ADDITIONAL INTERACTIONS
    MUTTALIB, KA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (05): : L159 - L164
  • [30] Non-hermitian random matrix models
    Janik, RA
    Nowak, MA
    Papp, G
    Zahed, I
    NUCLEAR PHYSICS B, 1997, 501 (03) : 603 - 642