ON THE LINEAR VERTEX-ARBORICITY OF A PLANAR GRAPH

被引:70
作者
POH, KS
机构
[1] Department of Mathematics National, University of Singapore Kent Ridge, Singapore
关键词
D O I
10.1002/jgt.3190140108
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove in this note that the linear vertex‐arboricity of any planar graph is at most three, which confirms a conjecture due to Broere and Mynhardt, and others. Copyright © 1990 Wiley Periodicals, Inc., A Wiley Company
引用
收藏
页码:73 / 75
页数:3
相关论文
共 8 条
[1]  
AKIYAMA J, IN PRESS PATH CHROMA
[2]  
BROERE I, 1984, 5TH P INT C THEOR AP, P151
[3]   POINT-ARBORICITY OF A GRAPH [J].
CHARTRAND, G ;
KRONK, HV ;
WALL, CE .
ISRAEL JOURNAL OF MATHEMATICS, 1968, 6 (02) :169-+
[4]   POINT-ARBORICITY OF PLANAR GRAPHS [J].
CHARTRAND, G ;
KRONK, HV .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1969, 44 (176P) :612-+
[5]   A GENERALIZATION OF CHROMATIC NUMBER [J].
CHARTRAND, G ;
GELLER, DP ;
HEDETNIEMI, S .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1968, 64 :265-+
[6]   DEFECTIVE COLORINGS OF GRAPHS IN SURFACES - PARTITIONS INTO SUBGRAPHS OF BOUNDED VALENCY [J].
COWEN, LJ ;
COWEN, RH ;
WOODALL, DR .
JOURNAL OF GRAPH THEORY, 1986, 10 (02) :187-195
[7]  
HARARY F, 1984, 1ST P COL S GRAPH TH, P127
[8]  
MATSUMOTO M, IN PRESS BOUNDS VERT