ASYMPTOTIC STRUCTURE OF BANACH SPACES AND RIEMANN INTEGRATION

被引:0
|
作者
Naralenkov, K. M. [1 ]
机构
[1] Bauman State Tech Univ, Dept Appl Math, Moscow 105005, Russia
关键词
Riemann integral; Lebesgue property; Schur property; spreading model; asymptotic l(1) Banach space;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we focus on the Lebesgue property of Banach spaces. A real Banach space X is said to have the Lebesgue property if any Riemann integrable function from [0, 1] into X is continuous almost everywhere on [0, 1]. We obtain a partial characterization of the Lebesgue property, showing that it has connections with the asymptotic geometry of the space involved.
引用
收藏
页码:111 / 124
页数:14
相关论文
共 50 条