COEFFICIENT PROBLEMS ON THE CLASS U(lambda)

被引:12
作者
Ponnusamy, Saminathan [1 ]
Wirths, Karl-Joachim [2 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Madras 600036, Tamil Nadu, India
[2] TU Braunschweig, Inst Anal & Algebra, D-38106 Braunschweig, Germany
来源
PROBLEMY ANALIZA-ISSUES OF ANALYSIS | 2018年 / 7卷 / 01期
关键词
Univalent function; subordination; Julia's lemma; Schwarz' lemma;
D O I
10.15393/j3.art.2018.4730
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For 0 < lambda <= 1, let U(lambda) denote the family of functions f (z) = z + Sigma(infinity)(n=2) alpha(n)z(n) analytic in the unit disk D satisfying the condition vertical bar(z/f(z))(2) f'(z) - 1 vertical bar <lambda in D. Although functions in this family are known to be univalent in D, the coe ffi cient conjecture about alpha(n) for n >= 5 remains an open problem. In this article, we shall fi rst present a non-sharp bound for vertical bar alpha(n)vertical bar. Some members of the family U(lambda) are given by z/f(z) = 1 - (1 + lambda)phi(z) + lambda(phi(z))(2) with phi(z) = e(i theta) z, that solve many extremal problems in U(lambda). Secondly, we shall consider the following question: Do there exist functions phi analytic in D with vertical bar phi(z)vertical bar < 1 that are not of the form phi(z) = e(i theta) z for which the corresponding functions f of the above form are members of the family U(lambda)? Finally, we shall solve the second coe ffi cient (alpha(2)) problem in an explicit form for f is an element of U(lambda) of the form f (z) = z/1 - alpha(2)z + lambda z integral(z)(0) omega(t) dt, where omega is analytic in D such that vertical bar omega(z)vertical bar <= 1 and omega(0) = alpha, where alpha is an element of (D) over bar.
引用
收藏
页码:87 / 103
页数:17
相关论文
共 26 条
[1]  
Aksentev L., 1970, IZV VYSS UCEBN ZAVED, P12
[2]  
Aksentiev L A, 1958, IZV VYSS UCEBN ZAVED, V3, P3
[3]  
Avkhadiev FG, 2009, FRONT MATH, P1
[4]   Julius and Julia: Mastering the Art of the Schwarz Lemma [J].
Boas, Harold P. .
AMERICAN MATHEMATICAL MONTHLY, 2010, 117 (09) :770-785
[5]  
Clunie J. G., 1979, P NATO ADV STUD I U, P137
[6]   A PROOF OF THE BIEBERBACH CONJECTURE [J].
DEBRANGES, L .
ACTA MATHEMATICA, 1985, 154 (1-2) :137-152
[7]  
Duren P, 1983, UNIVALENT FUNCTIONS
[8]  
Fournier R., 2007, COMPLEX VAR ELLIPTIC, V52, P1, DOI DOI 10.1080/17476930600780149
[9]   2 THEOREMS ON SCHLICHT FUNCTIONS [J].
FRIEDMAN, B .
DUKE MATHEMATICAL JOURNAL, 1946, 13 (02) :171-177
[10]  
Goodman A.W., 1983, UNIVALENT FUNCTIONS, VVolume I