ON THE EVOLUTION OF A CONCENTRATED VORTEX IN AN IDEAL FLUID

被引:50
作者
TURKINGTON, B
机构
[1] Department of Mathematics and Statistics, University of Massachusetts, Amherst, United States
关键词
FLUID MECHANICS - Mathematical Models;
D O I
10.1007/BF00279847
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The asymptotic nature of the point vortex idealization/approximation is analyzed. The results are restricted to the evolution of a single vortex (N equals 1) in a bounded and simply-connected domain in IR**2. The 'desingularization' of the Virchhoff-Routh equation is established using vortex flows with asymptotically concentrated vorticity.
引用
收藏
页码:75 / 87
页数:13
相关论文
共 13 条
[2]  
Arnold V. I, 1989, MATH METHODS CLASSIC, VSecond, DOI DOI 10.1007/978-1-4757-1693-1
[3]  
KATO T, 1967, ARCH RATION MECH AN, V25, P189
[4]  
Lamb H., 1932, HYDRODYNAMICS
[5]  
LIN CC, 1943, APPLIED MATH SERIES, V5
[6]   EULER EVOLUTION FOR SINGULAR INITIAL DATA AND VORTEX THEORY [J].
MARCHIORO, C ;
PULVIRENTI, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 91 (04) :563-572
[7]   COADJOINT ORBITS, VORTICES, AND CLEBSCH VARIABLES FOR INCOMPRESSIBLE FLUIDS [J].
MARSDEN, J ;
WEINSTEIN, A .
PHYSICA D, 1983, 7 (1-3) :305-323
[8]   EVOLUTION AND MERGER OF ISOLATED VORTEX STRUCTURES [J].
OVERMAN, EA ;
ZABUSKY, NJ .
PHYSICS OF FLUIDS, 1982, 25 (08) :1297-1305
[9]   COROTATING STEADY VORTEX FLOWS WITH N-FOLD SYMMETRY [J].
TURKINGTON, B .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1985, 9 (04) :351-369
[10]  
TURKINGTON B, 1983, COMMUN PART DIFF EQ, V8, P999, DOI 10.1080/03605308308820293