BIOGENESIS, STRUCTURE AND FUNCTION OF THE YEAST 20S PROTEASOME

被引:101
作者
CHEN, P
HOCHSTRASSER, M
机构
[1] Department of Biochemistry, University of Chicago, Chicago, IL 60637
关键词
ANTIGEN PRESENTATION; PROTEASOME; SACCHAROMYCES CEREVISIAE; UBIQUITIN; YEAST;
D O I
10.1002/j.1460-2075.1995.tb07260.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Intracellular degradation of many eukaryotic proteins requires their covalent ligation to ubiquitin. We previously identified a ubiquitin-dependent degradation pathway in the yeast Saccharomyces cerevisiae, the DOA pathway. Independent work has suggested that a major mechanism of cellular proteolysis involves a large multisubunit protease(s) called the 20S proteasome. We demonstrate here that Doa3 and Doa5, two essential components of the DOA pathway, are subunits of the proteasome. Biochemical analyses of purified mutant proteasomes suggest functions for several conserved proteasome subunit residues. All detectable proteasome particles purified from doa3 or doa5 cells have altered physical properties; however, the mutant particles contain the same 14 different subunits as the wild-type enzyme, indicating that most or all yeast 20S proteasomes comprise a uniform population of heterooligomeric complexes rather than a mixture of particles of variable subunit composition. Unexpectedly, we found that the yeast Doa3 and Pre3 subunits are synthesized as precursors which are processed in a manner apparently identical to that of related mammalian proteasome subunits implicated in antigen presentation, suggesting that biogenesis of the proteasome particle is highly conserved between yeast and mammals.
引用
收藏
页码:2620 / 2630
页数:11
相关论文
共 23 条
  • [1] Achstetter T., Ehmann C., Osaki A., Wolf D.H., J. Biol. Chem., 259, pp. 13344-13348, (1984)
  • [2] Akiyama K.-Y., Et al., Science, 265, pp. 1231-1214, (1994)
  • [3] Baudin A., Ozier-Kalogeropoulos O., Denouel A., Lacroute F., Cullin C., Nucleic Acids Res., 21, pp. 3329-3330, (1993)
  • [4] Brown M.G., Driscoll J., Monaco J.J., Nature, 353, pp. 355-357, (1991)
  • [5] Chen P., Johnson P., Sommer T., Jentsch S., Hochstrasser M., Cell, 74, pp. 357-369, (1993)
  • [6] DeMartino G.N., Orth K., McCullough M.L., Lee L.W., Munn T.Z., Moomaw C.R., Dawson P.A., Slaughter C.A., Biochim. Biophys. Acta, 1079, pp. 29-38, (1991)
  • [7] Enenkel C., Lehmann H., Kipper J., Guckel R., Hilt W., Wolf D.H., FEBS Lett., 341, pp. 193-196, (1994)
  • [8] Falkenburg P.H., Kloetzel P.M., J. Biol. Chem., 264, pp. 6660-6666, (1989)
  • [9] Frentzel S., Pesold-Hurt B., Seelig A., Kloetzel P.-M., J. Mol. Biol., 236, pp. 975-981, (1994)
  • [10] Friedman H., Snyder M., Proc. Natl Acad. Sci. USA., 91, pp. 2031-2035, (1994)