AN ITERATIVE ALGORITHM FOR THE MULTIFACILITY MINIMAX LOCATION PROBLEM WITH EUCLIDEAN DISTANCES

被引:4
作者
CHARALAMBOUS, C
机构
关键词
ALGORITHMS;
D O I
10.1002/nav.3800280214
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
An iterative solution method is presented for solving the multifacility location problem with Euclidean distances under the minimax criterion. The iterative procedure is based on the transformation of the multifacility minimax problem into a sequence of squared Euclidean minisum problems which have analytical solutions. Computational experience with the new method is also presented.
引用
收藏
页码:325 / 337
页数:13
相关论文
共 12 条
[1]   EFFICIENT METHOD TO SOLVE MINIMAX PROBLEM DIRECTLY [J].
CHARALAMBOUS, C ;
CONN, AR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (01) :162-187
[2]   ACCELERATION OF THE LEAST PTH ALGORITHM FOR MINIMAX OPTIMIZATION WITH ENGINEERING APPLICATIONS [J].
CHARALAMBOUS, C .
MATHEMATICAL PROGRAMMING, 1979, 17 (03) :270-297
[3]   SUBGRADIENT ALGORITHM FOR CERTAIN MINIMAX AND MINISUM PROBLEMS [J].
CHATELON, JA ;
HEARN, DW ;
LOWE, TJ .
MATHEMATICAL PROGRAMMING, 1978, 15 (02) :130-145
[4]  
Demyanov FF., 1990, INTRO MINIMAX
[5]   NEW METHOD FOR MULTIFACILITY MINIMAX LOCATION PROBLEM [J].
DREZNER, Z ;
WESOLOWSKY, GO .
JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 1978, 29 (11) :1095-1101
[6]   NEW ALGORITHMS FOR CONSTRAINED MINIMAX OPTIMIZATION [J].
DUTTA, SRK ;
VIDYASAGAR, M .
MATHEMATICAL PROGRAMMING, 1977, 13 (02) :140-155
[7]  
Elzinga J., 1976, Transportation Science, V10, P321, DOI 10.1287/trsc.10.4.321
[8]  
Francis RL., 1974, FACILITY LAYOUT LOCA
[9]  
LOVE RF, 1969, NAV RES LOGIST Q, V16, P503
[10]  
LOVE RF, 1973, INT J PROD RES, V11, P37