CLASS NUMBER DIVISIBILITY IN REAL QUADRATIC FUNCTION-FIELDS

被引:20
|
作者
FRIESEN, C [1 ]
机构
[1] UNIV TORONTO,DEPT MATH,TORONTO M5S 1A1,ONTARIO,CANADA
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 1992年 / 35卷 / 03期
关键词
CONTINUED FRACTIONS; FUNCTION FIELDS; CLASS NUMBERS;
D O I
10.4153/CMB-1992-048-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let q be a positive power of an odd prime p, and let F(q)(t) be the function field with coefficients in the finite field of q elements. Let h(F(q)(t, square-root M)) denote the ideal class number of the real quadratic function field obtained by adjoining the square root of an even-degree monic M is-an-element-of F(q)[t]. The following theorem is proved: Let n greater-than-or-equal-to 1 be an integer not divisible by p. Then there exist infinitely many monic, squarefree polynomials, M is-an-element-of F(q)[t] such that n divides the class number, h(F(q)(t, square-root M)). The proof constructs an element of order n in the ideal class group.
引用
收藏
页码:361 / 370
页数:10
相关论文
共 50 条
  • [31] Partitions associated to class groups of imaginary quadratic number fields
    Petersen, Kathleen L.
    Sellers, James A.
    AEQUATIONES MATHEMATICAE, 2023, 97 (01) : 63 - 74
  • [32] SIEGEL THEOREM FOR COMPLEX FUNCTION-FIELDS
    VOLOCH, JF
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 121 (04) : 1307 - 1308
  • [33] Diophantine approximation with prime restriction in real quadratic number fields
    Stephan Baier
    Dwaipayan Mazumder
    Mathematische Zeitschrift, 2021, 299 : 699 - 750
  • [34] Diophantine approximation with prime restriction in real quadratic number fields
    Baier, Stephan
    Mazumder, Dwaipayan
    MATHEMATISCHE ZEITSCHRIFT, 2021, 299 (1-2) : 699 - 750
  • [35] Simultaneous indivisibility of class numbers of pairs of real quadratic fields
    Chattopadhyay, Jaitra
    Saikia, Anupam
    RAMANUJAN JOURNAL, 2022, 58 (03) : 905 - 911
  • [36] Indivisibility of class numbers and iwasawa λ-invariants of real quadratic fields
    Byeon, D
    COMPOSITIO MATHEMATICA, 2001, 126 (03) : 249 - 256
  • [37] Simultaneous indivisibility of class numbers of pairs of real quadratic fields
    Jaitra Chattopadhyay
    Anupam Saikia
    The Ramanujan Journal, 2022, 58 : 905 - 911
  • [38] l-adic digits and class number of imaginary quadratic fields
    Pujahari, Sudhir
    Saikia, Neelam
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2024, 35 (11)
  • [39] A Note on the Fundamental Unit in Some Types of the Real Quadratic Number Fields
    Ozer, O.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS'16), 2016, 1773
  • [40] Function fields with class number indivisible by a prime l
    Daub, Michael
    Lang, Jaclyn
    Merling, Mona
    Pacelli, Allison M.
    Pitiwan, Natee
    Rosen, Michael
    ACTA ARITHMETICA, 2011, 150 (04) : 339 - 359