BURGERS TURBULENCE MODEL AS A STOCHASTIC DYNAMIC SYSTEM - MASTER EQUATION AND SIMULATION

被引:16
作者
BREUER, HP
PETRUCCIONE, F
机构
[1] Fakultät für Physik, Albert-Ludwigs-Universität, W-7800 Freiburg im Breisgau
来源
PHYSICAL REVIEW E | 1993年 / 47卷 / 03期
关键词
D O I
10.1103/PhysRevE.47.1803
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
By means of Burgers's equation a stochastic description of turbulent fluid flows is explained which is based on a discrete master equation. The latter governs the dynamics of a discrete multivariate stochastic process representing the random velocity field of the fluid. From the characteristic function corresponding to this stochastic process, the Hopf functional equation of turbulence is obtained. This implies that the infinite hierarchy of correlation functions can be derived from the master equation. The master-equation description naturally leads to a simple stochastic simulation algorithm which is well suited to numerical implementation. Stochastic simulations of the Burgers model of turbulence are performed and are shown to yield very accurate results.
引用
收藏
页码:1803 / 1814
页数:12
相关论文
共 30 条
  • [11] BURGERS JM, 1972, STATISTICAL MODELS T, V12
  • [12] Canuto C., 2012, SPECTRAL METHODS EVO
  • [13] GAUSSIAN STOCHASTIC-PROCESSES IN PHYSICS
    FOX, RF
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1978, 48 (03): : 179 - 283
  • [14] Gardiner C.W., 1985, HDB STOCHASTIC METHO
  • [15] GRABERT H, 1982, SPRINGER TRAC MOD PH, V95, pR7
  • [16] Honerkamp J., 1990, STOCHASTISCHE DYNAMI
  • [17] HOPF E, 1952, J RATION MECH ANAL, V1, P87
  • [18] HOPF E, 1962, P S APPL MATH, V13, P157
  • [19] HOPF E, 1957, P S APPL MATH AM MAT, V7, P41
  • [20] NUMERICAL STUDY OF BURGERS MODEL OF TURBULENCE BASED ON CHARACTERISTIC FUNCTIONAL FORMALISM
    HOSOKAWA, I
    YAMAMOTO, K
    [J]. PHYSICS OF FLUIDS, 1970, 13 (07) : 1683 - &