FRACTAL DIMENSION OF SPATIALLY EXTENDED SYSTEMS

被引:36
|
作者
TORCINI, A
POLITI, A
PUCCIONI, GP
DALESSANDRO, G
机构
[1] IST NAZL FIS NUCL,SFZ FIRENZE,FLORENCE,ITALY
[2] UNIV STRATHCLYDE,DEPT PHYS,GLASGOW G1 1XW,SCOTLAND
来源
PHYSICA D | 1991年 / 53卷 / 01期
关键词
D O I
10.1016/0167-2789(91)90166-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Properties of the invariant measure are numerically investigated in 1D chains of diffusively coupled maps. The coarse-grained fractal dimension is carefully computed in various embedding spaces, observing an extremely slow convergence towards the asymptotic value. This is in contrast with previous simulations, where the analysis of an insufficient number of points led the authors to underestimate the increase of fractal dimension with increasing the dimension of the embedding space. Orthogonal decomposition is also performed confirming that the slow convergence is intrinsically related to local nonlinear properties of the invariant measure. Finally, the Kaplan-Yorke conjecture is tested for short chains, showing that, despite the noninvertibility of the dynamical system, a good agreement is found between Lyapunov dimension and information dimension.
引用
收藏
页码:85 / 101
页数:17
相关论文
共 50 条
  • [41] Fractal management systems for extended, holonic enterprises
    Assogna, P
    DIGITAL ENTERPRISE CHALLENGES: LIFE-CYCLE APPROACH TO MANAGEMENT AND PRODUCTION, 2002, 77 : 296 - 304
  • [42] A note on the fractal dimension of attractors of dissipative dynamical systems
    Chepyzhov, VV
    Ilyin, AA
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 44 (06) : 811 - 819
  • [43] LYAPUNOV EXPONENTS AND FRACTAL DIMENSION IN NONLINEAR MECHANICAL SYSTEMS
    BAJKOWSKI, J
    MULLER, PC
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1988, 68 (04): : T49 - T53
  • [44] Numerical analysis of dynamical systems and the fractal dimension of boundaries
    Duarte, LGS
    da Mota, LACP
    de Oliveira, HP
    Ramos, RO
    Skea, JEF
    COMPUTER PHYSICS COMMUNICATIONS, 1999, 119 (2-3) : 256 - 271
  • [45] Numerical analysis of dynamical systems and the fractal dimension of boundaries
    Universidade Estado do Rio Janeiro, Instituto de Física, Depto. de Física Teorica, 20550-013 Rio de Janeiro, RJ, Brazil
    Comput Phys Commun, 2 (256-271):
  • [46] Fractal dimension for fractal structures
    Fernandez-Martinez, M.
    Sanchez-Granero, M. A.
    TOPOLOGY AND ITS APPLICATIONS, 2014, 163 : 93 - 111
  • [47] Fourier dimension and fractal dimension
    Evans, AK
    CHAOS SOLITONS & FRACTALS, 1998, 9 (12) : 1977 - 1982
  • [48] Phase transitions in the extended particle systems, Hagedorn temperature and fractal dimension of space, as a confinement phase transition order parameter
    Makhaldiani, Nugzar
    XXIV INTERNATIONAL BALDIN SEMINAR ON HIGH ENERGY PHYSICS PROBLEMS: RELATIVISTIC NUCLEAR PHYSICS AND QUANTUM CHROMODYNAMICS (BALDIN ISHEPP XXIV), 2019, 204
  • [49] Spatiotemporal chaos in spatially extended fractional dynamical systems
    Alqhtani, Manal
    Owolabi, Kolade M.
    Saad, Khaled M.
    Pindza, Edson
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 119
  • [50] Spatially extended systems with monotone dynamics (continuous time)
    Baesens, C
    Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems, 2005, 671 : 241 - 263