FRACTAL DIMENSION OF SPATIALLY EXTENDED SYSTEMS

被引:36
|
作者
TORCINI, A
POLITI, A
PUCCIONI, GP
DALESSANDRO, G
机构
[1] IST NAZL FIS NUCL,SFZ FIRENZE,FLORENCE,ITALY
[2] UNIV STRATHCLYDE,DEPT PHYS,GLASGOW G1 1XW,SCOTLAND
来源
PHYSICA D | 1991年 / 53卷 / 01期
关键词
D O I
10.1016/0167-2789(91)90166-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Properties of the invariant measure are numerically investigated in 1D chains of diffusively coupled maps. The coarse-grained fractal dimension is carefully computed in various embedding spaces, observing an extremely slow convergence towards the asymptotic value. This is in contrast with previous simulations, where the analysis of an insufficient number of points led the authors to underestimate the increase of fractal dimension with increasing the dimension of the embedding space. Orthogonal decomposition is also performed confirming that the slow convergence is intrinsically related to local nonlinear properties of the invariant measure. Finally, the Kaplan-Yorke conjecture is tested for short chains, showing that, despite the noninvertibility of the dynamical system, a good agreement is found between Lyapunov dimension and information dimension.
引用
收藏
页码:85 / 101
页数:17
相关论文
共 50 条
  • [31] Scaling properties of spatially extended chaotic systems
    Szendro, I. G.
    Lopez, J. M.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2007, 143 : 13 - 18
  • [32] Scaling properties of spatially extended chaotic systems
    I. G. Szendro
    J. M. López
    The European Physical Journal Special Topics, 2007, 143 : 13 - 18
  • [33] Transition to stochastic synchronization in spatially extended systems
    Baroni, L
    Livi, R
    Torcini, A
    PHYSICAL REVIEW E, 2001, 63 (03): : 362261 - 362261
  • [34] Error growth dynamics in spatially extended systems
    Vannitsem, S
    Nicolis, C
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (12A): : 2223 - 2235
  • [35] Scrambling and Lyapunov exponent in spatially extended systems
    Keselman, Anna
    Nie, Laimei
    Berg, Erez
    PHYSICAL REVIEW B, 2021, 103 (12)
  • [36] ROGUE WAVES IN SPATIALLY EXTENDED OPTICAL SYSTEMS
    Residori, S.
    Bortolozzo, U.
    Montina, A.
    Lenzini, F.
    Arecchi, F. T.
    FLUCTUATION AND NOISE LETTERS, 2012, 11 (01):
  • [37] Entropy production in driven spatially extended systems
    Maes, C
    ENTROPY-BOOK, 2003, : 251 - 267
  • [38] Error Growth Dynamics in Spatially Extended Systems
    Vannitsem, S.
    Nicolis, C.
    1996, (06):
  • [39] Entropy production in driven spatially extended systems
    Maes, C
    ENTROPY-BK, 2003, : 251 - 267
  • [40] Fractal geometry of bean root systems: Correlations between spatial and fractal dimension
    Nielsen, KL
    Lynch, JP
    Weiss, HN
    AMERICAN JOURNAL OF BOTANY, 1997, 84 (01) : 26 - 33