HOOK DIFFERENCES AND LATTICE PATHS

被引:23
作者
AGARWAL, AK [1 ]
ANDREWS, GE [1 ]
机构
[1] PENN STATE UNIV,UNIVERSITY PK,PA 16802
关键词
D O I
10.1016/0378-3758(86)90004-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:5 / 14
页数:10
相关论文
共 12 条
[1]  
ANDREWS GE, 1970, SCRIPTA MATH, V28, P297
[2]   THE HARD-HEXAGON MODEL AND ROGERS-RAMANUJAN TYPE IDENTITIES [J].
ANDREWS, GE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-PHYSICAL SCIENCES, 1981, 78 (09) :5290-5292
[3]   MULTIPLE SERIES ROGERS-RAMANUJAN TYPE IDENTITIES [J].
ANDREWS, GE .
PACIFIC JOURNAL OF MATHEMATICS, 1984, 114 (02) :267-283
[4]  
Andrews GE., 1977, HIGHER COMBINATORICS, P3, DOI [10.1007/978-94-010-1220-1_1, DOI 10.1007/978-94-010-1220-1_1]
[5]  
ANDREWS GE, 1976, ENCY MATH ITS APPLIC, V2
[6]  
ANDREWS GE, 1986, UNPUB EUROPEAN J COM
[7]  
BURGE WH, 1982, IBM RC9329 RES REP
[8]  
MacMahon P. A., 1960, COMBINATORY ANAL, V2
[9]  
Polya G, 1969, J COMB THEORY, V6, P102
[10]  
Rogers L. J., 1894, P LOND MATH SOC, Vs1-25, P318