M-Estimators for Regression with Changing Scale

被引:0
|
作者
Withers, Christopher S. [1 ]
Nadarajah, Saralees [2 ]
机构
[1] Ind Res Ltd, Lower Hutt, New Zealand
[2] Univ Manchester, Manchester M13 9PL, Lancs, England
关键词
M-estimator; Regression; Robust; Trend in scale;
D O I
10.1007/s13571-016-0122-x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
M-estimation provides a class of estimators for the 'signal plus noise' problem, where the signal has a parametric form and the distribution of the noise is unspecified. Here, we extend this to modeling observations subject to trends in both location and scale, that is, to the model observation = (location signal) + (scale signal) x (noise), where the location signal and scale signal are smooth functions of an unknown q-vector theta say, and the components of the noise have some unknown cumulative distribution function (cdf) F say. We define the scaled M-estimator of. with respect to a given smooth function rho : R -> R. When the scale is not changing this reduces to the usual unscaled M-estimator requiring that F be suitably centered with respect to rho.
引用
收藏
页码:238 / 286
页数:49
相关论文
共 50 条
  • [31] Characterizing M-estimators
    Dimitriadis, Timo
    Fissler, Tobias
    Ziegel, Johanna
    BIOMETRIKA, 2024, 111 (01) : 339 - 346
  • [32] ON INCONSISTENT M-ESTIMATORS
    FREEDMAN, DA
    DIACONIS, P
    ANNALS OF STATISTICS, 1982, 10 (02): : 454 - 461
  • [33] M-ESTIMATORS AND GNOSTICAL ESTIMATORS OF LOCATION
    NOVOVICOVA, J
    PROBLEMS OF CONTROL AND INFORMATION THEORY-PROBLEMY UPRAVLENIYA I TEORII INFORMATSII, 1989, 18 (06): : 397 - 407
  • [34] Limiting behavior of recursive M-estimators in multivariate linear regression models
    Miao, BQ
    Wu, Y
    JOURNAL OF MULTIVARIATE ANALYSIS, 1996, 59 (01) : 60 - 80
  • [35] Asymptotics of M-estimators in two-phase linear regression models
    Koul, HL
    Qian, LF
    Surgailis, D
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2003, 103 (01) : 123 - 154
  • [36] ROBUST LINEAR-REGRESSION VIA BOUNDED INFLUENCE M-ESTIMATORS
    CHENG, CL
    JOURNAL OF MULTIVARIATE ANALYSIS, 1992, 40 (01) : 158 - 171
  • [37] Asymptotic properties of M-estimators in linear and nonlinear multivariate regression models
    Withers, Christopher S.
    Nadarajah, Saralees
    METRIKA, 2014, 77 (05) : 647 - 673
  • [38] Robustness of confidence intervals for scale parameters based on M-estimators
    Dasiou, D
    Moyssiadis, C
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2000, 29 (12) : 2761 - 2773
  • [39] New M-estimators in semi-parametric regression with errors in variables
    Butucea, Cristina
    Taupin, Marie-Luce
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2008, 44 (03): : 393 - 421
  • [40] Regression M-estimators with One Modified Form of Doubly Censored Data
    Shen, Pao-Sheng
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2013, 42 (03) : 603 - 612