On integral inequalities of the Hermite-Hadamard type for co-ordinated (, m(1))-(s, m(2))-convex functions

被引:10
|
作者
Xi, Bo-Yan [1 ]
Bai, Shu-Ping [1 ]
Qi, Feng [2 ,3 ]
机构
[1] Inner Mongolia Univ Nationalities, Coll Math, Tongliao 028043, Inner Mongolia, Peoples R China
[2] Tianjin Polytech Univ, Coll Sci, Dept Math, Tianjin 300387, Peoples R China
[3] Henan Polytech Univ, Inst Math, Jiaozuo 454010, Henan, Peoples R China
关键词
(alpha; m(1))-(s; m(2)) convex function; Co-ordinates; Hermite-Hadamard type inequality;
D O I
10.1080/09720502.2016.1247509
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, the authors establish some integral inequalities of the Hermite-Hadamard type for co-ordinated (a, m1)-(s, m2)-convex functions on co-ordinates on a rectangle of the plane (2)(0).
引用
收藏
页码:1505 / 1518
页数:14
相关论文
共 50 条
  • [1] HERMITE-HADAMARD INEQUALITIES FOR CO-ORDINATED HARMONIC CONVEX FUNCTIONS
    Noor, M. A.
    Noor, K. I.
    Iftikhar, S.
    Ionescu, C.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2017, 79 (01): : 25 - 34
  • [2] Integral inequalities of Hermite-Hadamard type for (α, s)-convex and (α, s,m)-convex functions
    Xi, Bo-Yan
    Gao, Dan-Dan
    Qi, Feng
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, (44): : 499 - 510
  • [3] Some new Hermite-Hadamard type inequalities for differentiable co-ordinated convex functions
    Guo, Xu-Yang
    Qi, Feng
    Xi, Bo-Yan
    COGENT MATHEMATICS, 2015, 2
  • [4] Hermite-Hadamard type inequalities for the product of (α, m)-convex functions
    Yin, Hong-Ping
    Qi, Feng
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2015, 8 (03): : 231 - 236
  • [5] Fractional Hermite-Hadamard type integral inequalities for functions whose modulus of the mixed derivatives are co-ordinated (log,(α,m))-preinvex
    Ghomrani, S.
    Meftah, B.
    Kaidouchi, W.
    Benssaad, M.
    AFRIKA MATEMATIKA, 2021, 32 (5-6) : 925 - 940
  • [6] Integral inequalities of Hermite-Hadamard type for (α, m)-GA-convex functions
    Ji, Ai-Ping
    Zhang, Tian-Yu
    Qi, Feng
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 18 (02) : 255 - 265
  • [7] SOME NEW HADAMARD TYPE INEQUALITIES FOR CO-ORDINATED m-CONVEX AND (α, m)-CONVEX FUNCTIONS
    Ozdemir, M. Emin
    Set, Erhan
    Sarikaya, Mehmet Zeki
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2011, 40 (02): : 219 - 229
  • [8] Integral inequalities of the Hermite-Hadamard type for (α, m)-GA-convex functions
    Shuang, Ye
    Qi, Feng
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (04): : 1854 - 1860
  • [9] Hermite-Hadamard type inequalities for the m- and (α, m)-geometrically convex functions
    Xi, Bo-Yan
    Bai, Rui-Fang
    Qi, Feng
    AEQUATIONES MATHEMATICAE, 2012, 84 (03) : 261 - 269
  • [10] Hermite-Hadamard type inequalities for m-convex and (α, m)-convex functions
    Ozcan, Serap
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01):