ASYMPTOTIC EQUATIONS FOR CONSERVATION-LAWS OF MIXED TYPE

被引:5
作者
BRIO, M
HUNTER, JK
机构
[1] UNIV CALIF DAVIS,DEPT MATH,DAVIS,CA 95616
[2] UNIV CALIF DAVIS,INST THERET DYNAM,DAVIS,CA 95616
基金
美国国家科学基金会;
关键词
D O I
10.1016/0165-2125(92)90046-5
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We derive canonical asymptotic equations for weakly nonlinear solutions of conservation laws of mixed type. When two real wave speeds coalesce and become complex, we obtain the transonic small disturbance equation which changes type from hyperbolic to elliptic. When the coefficient of the nonlinear term in the transonic small disturbance equation vanishes, we derive cubically nonlinear 2 x 2 asymptotic equations. These include canonical equations which are parabolic on a line in state space and strictly hyperbolic away from this line.
引用
收藏
页码:57 / 64
页数:8
相关论文
共 14 条
[1]   ROTATIONALLY INVARIANT HYPERBOLIC WAVES [J].
BRIO, M ;
HUNTER, JK .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1990, 43 (08) :1037-1053
[2]  
CHOQUETBRUHAT Y, 1969, J MATH PURE APPL, V48, P117
[3]  
EMBID P, UNPUB COMBUSTION FLA
[4]  
EMBID P, SIAM J APPL MATH
[5]   SMOOTH AND TIME-PERIODIC SOLUTIONS TO QUASILINEAR WAVE-EQUATION [J].
GREENBERG, JM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1975, 60 (01) :29-50
[6]  
GUIRAUD JP, 1989, SYMPOSIUM TRANSSONIC, V3, P171
[7]   THE RIEMANN PROBLEM FOR A CLASS OF HYPERBOLIC CONSERVATION-LAWS EXHIBITING A PARABOLIC DEGENERACY [J].
KEYFITZ, BL ;
KRANZER, HC .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1983, 47 (01) :35-65
[8]  
KEYFITZ BL, 1990, NONLINEAR EVOLUTION, V27, P29
[9]  
KEYFITZ BL, 1989, CONT MATH, V100, P203
[10]  
KEYFITZ BL, 1991, VISCOUS PROFILES NUM, P84