A NEW OSCILLATION CRITERION FOR TWO-DIMENSIONAL DYNAMIC SYSTEMS ON TIME SCALES

被引:1
作者
Jia Baoguo [1 ]
机构
[1] Zhongshan Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
来源
TAMKANG JOURNAL OF MATHEMATICS | 2011年 / 42卷 / 02期
基金
中国国家自然科学基金;
关键词
Two-dimensional; oscillation; time scale; dynamic equation;
D O I
10.5556/j.tkjm.42.2011.237-244
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the linear dynamic system on time scales u(Delta) = pv, v(Delta) = -qu(sigma) where p > 0 and q are rd -continuous functions on a lime scale (parallel to) over bar such that sup (parallel to) over bar = infinity When q(i) is allowed to lake on negative values, we establish an oscillation criterion for system (0.1). Our result improves a main result of Fu and Lin [S. C. Fu and M. L. Lin, Oscillation and nonoscillation criteria for linear dynamic systems on time scales, Computers and Mathematics with Applications, 59(2010), 2552-2565].
引用
收藏
页码:237 / 244
页数:8
相关论文
共 6 条
[1]  
BOHNER M., 2001, DYNAMIC EQUATION TIM
[2]  
Coppel W. A., 1971, LECT NOTES MATH, P17
[3]   Oscillation and nonoscillation criteria for linear dynamic systems on time scales [J].
Fu, Sheng-Chen ;
Lin, Ming-Li .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (08) :2552-2565
[4]   A Wong-type oscillation theorem for second order linear dynamic equations on time scales [J].
Jia Baoguo ;
Erbe, Lynn ;
Peterson, Allan .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2010, 16 (01) :15-36
[5]   Oscillation criteria for two-dimensional dynamic systems on time scales [J].
Xu, Youjun ;
Xu, Zhiting .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 225 (01) :9-19
[6]  
[No title captured]